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Abstract 

The transmission of digital information over a fading dispersive channel is con- 
sidered, subject to a bandwidth constraint on the input signals. A specific signaling 
scheme is proposed, in which information is transmitted with signals formed by 
coding over a s e t  of smaller basic signals, all of which excite approximately inde- 
pendent and orthogonal outputs. The problem is then modeled as one of block coding 
over successive independent uses of a diversity channel. 

Upper and lower bounds to the minimum e r r o r  probability attainable by such a 
scheme a r e  derived. These bounds a r e  exponentially decreasing in t e rms  of the 
t ime available fo r  information transmission, and agree asymptotically for  a range 
of rates.  These bounds a r e  used to  interpret the significance of different signal 
and channel parameters,  and the interplay between them. 

Some conclusions a r e  drawn concerning the nature of good input signals, the 
major one being that any basic signal should be transmitted at one of a small  num- 
be r  of discrete voltage levels. Several numerical examples a r e  included, to illus- 
t ra te  how these results may be applied in the estimation of performance levels 
fo r  practical channels. 
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I. INTRODUCTION 

Channels that exhibit both fading and dispersion a r e  often used for communication 
Perhaps the best known examples of such channels a r e  fading ionospheric purposes. 

radio links, and tropospheric scatter systems. More recently, communication has 
been achieved by reflection from the lunar surface and through plasmas, and fading- 
dispersive channels have been artificially created as in the case of Project W e s t  Ford. 

Our main concern is the use of such a channel for  digital communication when the 
input signals are bandwidth-constrained. 
for such a communication system, and t o  use these to determine how the interaction 
between input signals and channel statistics affects the ultimate e r r o r  probability. Our 
tools for this study consist of the techniques of communication theory and information 
theory, and we shall rely heavily on the use of bounds on the attainable e r r o r  
probability. 

We wish to  obtain estimates of performance 

1.1 COMMUNICATION SYSTEM 

By digital communication, w e  refer to  transmission of one of M equiprobable input 
The signal is corrupted by the channel, and we 1 

T signals, at a rate R = --In M nats/sec. 
choose to  decode at the channel output for minimum e r r o r  probability. 
notation P 
se t s  of input signals and decoders (subject to such constraints as bandwidth, average 
power, etc.). 
affect Pe. 

with its own time delay, Doppler shift, and reflection c ros s  section. 
restrictions on the input signals and assumptions about the scat terers ,  the channel 
characterist ics may be summarized by the scattering function u ( r ,  f ) ,  where u ( r ,  f )  drdf 
is the average energy scattering cross  section of those scat terers  with time delays 
between r and r t d r  and Doppler shifts between f and f t df. 

We shall use the 
to  stand for  the minimum attainable e r r o r  probability, minimized over all e 

W e  wish to determine in what fashion R and the channel characteristics 

We envisage the channel as composed of a large number of point scat terers ,  each 
Subject to  certain 

We consider constructing the M input signals by modulating N smaller  basic sig- 
nals designed so  that each is independently affected by the channel (that is, no inter- 
symbol interference o r  memory). 
modulation levels, one for each basic signal, and the problem then reduces to coding 
over the N basic signal modulation levels. The bandwidth constraint enters into the 
determination of N. 

Each of the M signals wi l l  consist of a set of N 

Such a model describes many actual systems for communication over fading- 
dispersive channels, although usually no attempt is made to exploit the possibilities of 
coding. 
Moreover, our results should be indicative of the manner in which the signal and channel 
parameters interact for more general communication systems. 

F o r  this type of scheme our analysis wil l  provide ultimate performance limits. 

1 



1 . 2  HISTORY OF THE PROBLEM 

There is a large body of previous work concerning this kind of problem. We make 
no attempt to  give a complete listing of results,  but t r y  to mention ear l ier  work that 
seems most pertinent to the present analysis. 

For digital communication, with specified input signals, the optimum receiver is 
defined as the one that minimizes e r r o r  probability. 
receiver has been considered by several  authors in recent years. 
Green,3 and Kailath have studied problems involving M-ary signaling over Gaussian 
multipath channels, and M i d d l e t ~ n , ~  Turin,‘ and Bello 

signal situation. 
is known (it can be interpreted as an ttestimation-correlationtt operation ). 

The determination of the optimum 
Price,”  P r i ce  and 

4 

7 have considered the binary- 

4 
The result of these studies is that the form of the optimum receiver 

Although the form of the optimum receiver for an arbitrary set of M input signals 
is known, little can be said of the resulting system performance. Fo r  example, we 
would like to vary the set of input signals (subject to the constraints), consider each 
se t  with the corresponding optimum receiver,  and choose the combination that results 
in an e r r o r  probability smaller  than all the others. 
o r  decoder, would then be defined as the optimum combination for  communication over 
the particular channel under consideration. Unfortunately, because of the complicated 
form of the optimum decoder, exact e r r o r  probabilities have been calculated only in 
special cases. 

This s e t  of signals and receiver,  

There i s ,  however, another method for attacking this problem, one that avoids some 
of the complexities just mentioned. 
e r r o r  probabilities in favor of the determination of bounds to the probability of e r r o r  
that may be achieved by transmitting over such a channel. 
derive upper and lower bounds to the achievable probability of e r r o r  which agree expo- 
nentially. 
ability because our primary interest is not merely the determination of a minimum e r r o r  
probability but the study of how the interaction between input signals and channel s ta -  
tistics affects the e r r o r  probability. 

(see for  example, Shannon,8 Fano,’ and Gallagerlo),  and have recently been used by 
Holsingerl to study the problem of communication over a deterministic 
colored Gaussian noise channel. Pierce 13’ l 4  has derived bounds for the binary case 
with slowly fading channel and variable data rate,  and for a special M-ary transmission 
case with linear filtering at the decoder. Jacobs15 f i r s t  showed that the capacity of an 
infinite bandwidth fading channel is the same a s  that of an equivalent Gaussian channel. 

This method by-passes the exact calculation of 

It is frequently possible to 

F o r  our purposes, this wi l l  be nearly a s  satisfactory as an exact e r r o r  prob- 

These bounding techniques have been widely applied to discrete memoryless channels 

and Ebert’ 

The problem considered here  is quite s imilar  to that analyzed by Kennedy,’ ‘ who 
treated fading dispersive channels with M-ary orthogonal signals, and derived both upper 
and lower bounds to the attainable e r r o r  probability. 
ference, however, in that orthogonal signals require a large amount of bandwidth, and 

There is one most important dif- 
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we assume that the input signals must be  bandwidth-constrained. 
a major distinction, making the problem more difficult to solve, and in many cases,  
physically more meaningful. 

The reader  who is interested mainly in the nature of our results might choose at 
this point to glance at the first sections of Section IV, where some of the major points 
a r e  summarized and discussed. 

This turns out to be 
' 

1 . 3  SUMMARY O F  THIS RESEARCH 

In Section 11, we derive an approximate mathematical model of the channel, and dis- 
cuss the problems involved in using a fading dispersive channel for digital communica- 
tion of one of M arbi t rary input signals. Then we enumerate several  specific types of 
signaling schemes, and mention briefly the problems involved in signal design. 

Section I11 is devoted to determination and evaluation of bounds to e r r o r  probability, 
It is highly mathematical in nature by using the channel statistics derived in Section 11. 

and provides the abstract results necessary fo r  the evaluation of performance levels. 
In Section IV, we discuss the physical significance of the results of Section 111, and 

relate these results to the communication problem set forth in Section 11. We illustrate 
possible applications through some numerical examples, and return to  the question of 
signal design. 
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11. DIGITAL COMMUNICATION OVER FADING CHANNELS 

2 . 1  CHANNEL MODEL 

The problem under consideration is the transmission of information over a linear, 
time -continuous , fading, dispersive channel. 
of a large number of independent point scatterers, such as the ones that made up the 
West Ford belt, for example. 
tered at some nominal high c a r r i e r  frequency, wo, SO that 

The channel is envisioned as a collection 

Any input signal s(t) will be a narrow-band signal cen- 

where u(t) is known as the complex lowpass modulation of s(t). 
mean that the bandwidth of s(t) is much less than o0. Consider a particular scat terer  
with range r s e c  and Doppler shift f Hz. If 2 r f  << w0, then the signal returned by that 
scat terer  will  be approximately 

By narrow-band, we 

j[ 

where A is an attenuation factor. 
within 2n/w sec, so that it is reasonable to consider the quantity 8 I --war as a random 
variable distributed uniformly over ( 0 ,  2 ~ ) .  

It is unlikely that the value of r could be specified 

0 

Let us partition the s e t  of possible ranges and Doppler shifts into small  cells, and 
consider one particular cell centered on range r and Doppler shift f ,  containing a num- 
be r  of scatterers.  
rocal bandwidth of u(t), and the dimension in f is much less than the reciprocal t ime 
duration of u(t), then the contribution to the total received process from all the scat- 
t e r e r s  in that cell  w i l l  be 

If the dimension of the cell in r is small compared with the recip- 

where A and 8 describe the resultant amplitude and phase from all s ca t t e r e r s  in the 
cell. 

With a large number of independent scat terers  in the cell,  each with random phase 
and approximately the same reflection coefficient, A(r ,  f) w i l l  tend to have a Rayleigh 
distribution, while 8(r,f)  wi l l  become uniform on (0,  2n).17 In that case,  the r ea l  and 
imaginary parts of A( r ,  f) eJe(r9 f, wi l l  be statistically independent, zero-mean, Gaussian 
random variables with equal variances. Note that the number of independent scat terers  
in a cell does not have to be particularly large for this to  be true; in fact, as few as six 
may give a good approximation to Rayleigh amplitude and random phase. 18 

With the previous assumptions, the total signal y(t) received from all of the cells 
for  a given input u(t) wi l l  be a zero-mean Gaussian random process, and thus the 
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statist ics of y(t) may be completely determined from the correlation function 

Ry(t, 7) = Y(t)  Y(T)* (4) 

If it is assumed that scat terers  in different cells a r e  uncorrelated, and that the cells 
a r e  small enough s o  that sums may be replaced by integrals, the expectation may be 
carried out, with the result that 

1 2  The quantity u ( r ,  f )  equals Y A  ( r , f ) ,  and is known as the channel scattering function. It 
represents the density of reflecting c ros s  section, that is, u ( r , f )  drdf is the average 
energy scattering c ros s  section of those scatterers with ranges between r and r t d r  sec 
and Doppler shifts between f and f t df Hz. If we assume that there is no average energy 
loss  through the channel (this is no restriction, since any average attenuation may be 
accounted for  by a normalization of the input signal level), then 

u ( r , f )  drdf = 1. loW som 
A typical scattering function is illustrated in Fig. 1. The most important charac- 

te r i s t ics  of u(r, f )  are B, the frequency interval in f outside of which u ( r ,  f )  is essen- 
tially zero, and L, the time interval in r outside of which u ( r , f )  is effectively zero. 
The quantity B is called the Doppler spread, and represents the average amount 
that an input signal wi l l  be spaced in frequency, while L is known as the multi- 
path spread, and represents the average amount in t ime that an input signal wi l l  
be spread. Table 1 l i s t s  approximate values of B and L for some practical cases. 
The exact way in which B and L are defined is unimportant, since these will only 
be used as rough indications of channel behavior. 

Fig. 1. A typical u ( r , f ) .  
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Table 1. Values of B and L. 

Channel 

Ionospheric Scatter 10 1 o-4 

1 o - ~  
Chaff Clouds l o 2  5 x 

Tropospheric Scatter 10 

West Ford Belt 10' 
2 

Moon Scatter 10 

If cr(r,f) is well-behaved and unimodal as shown, then an input of a single sine wave 
wi l l  result  in an output whose correlation t ime o r  fade duration w i l l  be approximately 
l /B sec; that is, the fading of any two points on the received process should be essen- 
tially independent if they a r e  separated by 1/B or  more seconds. If the input consists of 
two sinusoids, they should fade independently if their frequency spacing is at least  of the 
order  of l /L Hz.  It has been shown elsewhere," that if  the input signal has duration T 
and bandwidth W,the received waveform will have a number of degrees of freedom (the 
total number of independent samples in the output process) approximately equal to  

( l tBT) (  l tLW), i f B L S l o r T W = l  

otherwise 
K = {  

(T+L)(W+B) 9 

(7) 

We emphasize the roughness of relation (7). The channel wi l l  later by treated as a 
diversity channel with K paths, and (7) is used only to estimate K. The validity of this 
channel model will not depend on the accuracy of (7), although any numerical results wi l l  

be approximate to the extent that it gives a good approximation of K.  

INPUT SCATTER SIGNAL ADDITIVE TOTAL 
SIGNAL CHANNEL PORTION OF NOISE OUTPUT 

OUTPUT SIGNAL 

Fig. 2. The channel model. 

W e  also assume that any signal that w e  receive is corrupted by the addi- 
tion of additive, white, zero-mean Gaussian noise (such as front-end receiver 
noise) with density No/2 watts per Hz. 
nel model is shown in Fig. 2. 

A block diagram of the over-all chan- 
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2. 2 DIGITAL COMMUNICATION 

The basic problem to be considered is digital communication over a fading, d i s -  
persive channel, accomplished by sending one of a set  of M equiprobable signals and 
decoding at the output for minimum average e r r o r  probability, Pe. 
a r e  assumed to be time-limited to (O,T), and we shall be interested mainly in the 

asymptotic case, where M and T a r e  large. We also require that the signals all l ie 
essentially within a bandwidth W, and that the average t ransmit ter  power be l e s s  than 
or equal to Pt. Ideally, our procedure would be to choose an arbi t rary set of M input 
signals that satisfy the constraints, determine the optimum receiver for these signals, 
evaluate the resulting Pe, and then choose the set of M signals that result  in minimum 
P fo r  the particular fading channel under consideration. 

The first step is to find the optimum receiver for an a rb i t ra ry  set  of M signals. 

These input signals 

e 

This problem has been previously considered by several  authors, with the result  that 
the form of the optimum receiver is known. Perhaps the simplest description is that 
given by Kailath,4 who shows that the optimum receiver may be interpreted a s  a bank 
of "estimator-correlator" operations. That is, one element of the receiver takes the 
channel output, assumes that a particular input signal w a s  sent, computes a minimum 
mean-square e r r o r  estimate of the signal portion of the output (before the noise is 
added), and correlates  this with the actual output signal. Unfortunately, except in a 
few very special cases,  it is practically impossible to use the previous results for the 
computation of e r r o r  probabilities for a given set  of M signals, because of the com- 
plicated expressions that must be evaluated. 
the s impler  case of the nonfading, additive Gaussian noise channel, exact e r r o r  proba- 
bilities cannot usually be computed for large numbers of input signals. 

In the case  of the additive Gaussian noise channel, one approach is to use bounds 
on Pe, ra ther  than to attempt to  compute actual e r r o r  probabilities. 
done successfully by various authors, l o '  '" 1 2 '  l 9  who have found upper and lower 
bounds to P 

one to design signals that minimize the bound on Pe, which has  proved much simpler 
than the minimization of Pe itself, and yet has  often yielded useful results. 
a fading channel is considered, however, the more severe nature of the channel 
variations makes even computing bounds to  Pe a major problem. 

In order to illustrate the difficulties, and obtain results that w i l l  be useful la ter ,  
we consider an input signal, xs(t), where s(t) is a unit energy signal, and x is an 
amplitude modulation. It is possible to expand the output signal in a Karhunen- 
Loeve orthonormal expansion,20 using the eigenfunctions of R (t, t) to obtain 

This is hardly surprising, for even in 

This has been 

which in many cases  agree very well for large M and T. This allows e 

When 

Y 

k= I 
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Properties of the solutions to  the integral equation given in (IO) have been enumerated 
by several  authors. lo ,  11' 12, 19, 21 If w0 is very large, it has  been shown" that the 
eigenfunctions Q (t) w i l l  approximate conjugate pairs,  with both functions of any pair 
having the same eigenvalue. 
tion to  ( l o ) ,  then Qk(t) is orthogonal to Qk(t) and is also a solution. 
be shown that 

k 
Thus, for any particular eigenvalue pk, if Qk(t) is a solu- * 

Moreover, it may 

- 
rirk * = (x 2 pkt : N ~ )  hi j  

- 
rirk = 0 ,  

provided the additive noise is white. 
random variable, and they a r e  all statistically independent. 

Thus each r is a zero-mean complex Gaussian k 

Because of our normalization of the channel and input, 

m a3 

F o r  la te r  convenience, lump each pair of pk together and call the result  Xk, so  that X k =  
2pk; then, there w i l l  be half as many X's as p's, and 

L X k =  1. 

k= 1 

Each Xk may be interpreted as the fraction of total received energy contributed by the 
k diversity path, on the average. The total number of significant Xk will be approxi- 
mately equal to  K,  as given by (7). 

If one of two input signals is sent, we  can make use of the fact that any two sym- 
metric,  positive-definite matrices can be simultaneously diagonalized," to find one 
(nonorthogonal) expansion that results in independent components of r ,  regardless of 
which signal was sent. The eigenvalues will no longer have the same simple interpre- 
tation a s  before, however, and more importantly, if both signals are simultaneously 
modulated and transmitted, they cannot be separated at the output because they will 
each excite the same output components and'hence result  in crosstalk. For M arbi-  
t r a r y  signals, there is no one output expansion that resul ts  in independent signal 

th 

- 
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components, regardless of what signal w a s  sent. 

Due to  the fact that we  cannot separate the components received at the channel output 
from many different arbi t rary input signals, the general communication problem seems 
insurmountable, at this time. If, however, we start with a set of basic input signals 
that can be uniquely separated at the channel output, with output components that are 
all statistically independent, then we could consider coding over this signal se t  and have 
some hope of computing e r r o r  probabilities. In particular, the problem could be formu- 
lated as one of communication over a time-discrete, amplitude-continuous memoryless 
channel. 

Unfortunately, such a restriction to a specific basic input set would preclude any 
Coding over a specific se t  will general determination of ultimate performance limits. 

certainly result  in an upper bound to the minimum attainable P 
of simplicity, many existing fading dispersive systems employ basic signal se t s  of the 
type just described, and thus analysis would yield bounds on the best possible results 
for  systems of that class. Finally, an analysis of this type of scheme wi l l  still allow 
us  to obtain a greater understanding of the performance l imits of bandwidth-constrained 
fading dispersive channels than has been previously available. We shall return to some 
of these points. 

Moreover, for reasons e' 

2 . 3  SIGNALING SCHEME 

W e  choose a se t  of input signals that have the desirable properties mentioned above, 
namely a se t  of time and frequency translates of one basic signal, with sufficient guard 
spaces allowed so that the output signals a r e  independent and orthogonal. 
subsection we consider the output statistics for an arbitrary choice of basic signal and 
derive an equivalent discrete memoryless channel. 
nal design are discussed. 
probability may later be applied. 

In the first 

In the second, some aspects of sig- 
The problem is so formulated that existing bounds on e r r o r  

2. 31  Input Signals and Output Statistics 

Consider a unit energy input signal that is approximately time-limited to Ts seconds 
and bandlimited to W Hz, but is otherwise arbitrary. 
replicas of this signal with sufficient guard spaces in time and frequency left between 
them wi l l  then yield approximately orthogonal and independent channel outputs. A s  we 
have said, separating the input signals by more than L seconds in t ime wi l l  make the 
output signals approximately orthogonal, and an additional 1/B wi l l  make them inde- 
pendent, too. Similarly, in the frequency domain, a spacing of B Hz w i l l  make the out- 
put signals approximately orthogonal, and an additional 1/L wil l  make them independent. 
W e  take our basic input signals to  be the (say) N time and frequency translates of the 
given (Ts, Ws) waveform that satisfy these independence and orthogonality conditions 
and exhaust the available time-bandwidth space (see Fig. 3) .  The outputs resulting 
from these N basic signals wi l l  be independent and orthogonal. 

Time- and frequency-shifted 
S 
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1 

I W 1; 
ws 

BANDWIDTH 

I1 

1 

Fig. 3. Basic input signals. 

Suppose w e  construct our M input signals by simultaneously amplitude-modulating 
the N basic signals. 

(Xm 1 * mn 
basic input signal is assumed to have unit energy, we require 

In this case, the mth input signal may be expressed as zm = 
is the modulation on the nth basic signal. Since each X m2, .  . . , xmN), where x 

M f x 2  mn TPt,  
m=l n=l  

in order to  satisfy the average input energy constraint. 
Consider one basic signal, with scalar  amplitude modulation x. This is just the 

situation that we considered in section 2. 2,  and the resulting output random process 
r(t) may be transformed into a vector z, whose components are statistically independent, 
zero-mean, complex Gaussian random variables. The k component of may be split 
into its real and imaginary parts,  

th 

'k = r k r e  ' jrkim9 (16) 

1 2  where each part is a r ea l  zero-mean Gaussian variable with variance? (X hktNo), and 
the two are independent, so  that 

10 



1 
P(rkre, rkimlx) = 

(x2kktNo) x hk t No 

2 2 The components of rk enter the density in the form rkre t rkim, so, for the purpose of 
estimating x, it is only necessary to record this sum, and not the individual terms.  

Define 

1 2  2 
yk = (rkretrkim) ' 

then it can be shownz3 that 

Recall that the properties of X- (X1,  h 2 , .  . . , XK) depended on the assumption that the 
channel was lossless, and that any average attenuation should be absorbed into the 
energy constraint. From (19), w e  see that N can also be absorbed into the energy con- 
straint, provided that we  redefine the constraint on the input to  be 

0 

0 n=l  m = l  

The quantity P is the average output signal power, and the value of xmn in (20)  is /& t imes the actual channel input signal level. Now 

so that the density 

L 

governs the output vector y, given x. Note that y is a sufficient statistic for the esti- 
mation of x, and is thus all the receiver needs to  record. 

- - 
Until now, except for noting the over-all power constraint in (ZO),  we considered 

transmission of one amplitude modulated input signal, modeled as one use of an 
amplitude-continuous channel. 
and orthogonal, this is easily generalized to simultaneous modulation and t rans-  
mission of each signal, thereby reducing the problem to N uses  of a memoryless, 

Since the N basic signals were chosen to be independent 

11 



amplitude-continuous, time-discrete channel, where on each use the input is a scalar x, 
and the output a vector y. - 

Let T and W denote, respectively, the guard space between adjacent signals in 
g g 

t ime and bandwidth. Then it is easy to see that 

The ra te  of information transmission is usually defined as 

1 
T R = - In M nats/second 

but the ra te  that w i l l  prove most useful in Section I11 is 

1 RN a g l n  M nats/channel use. 

The energy constraint may be written 

n=l m=l  

A s  we have noted, the number of positive hk w i l l  be approximately given by 

(l+BTs)( 1+LWS) , i f  BL S 1 o r  TsWs = 1 

otherwise 
K ={  

(Ts+L)(Ws+B), 

Note that, as W goes to  infinity (the bandwidth constraint is removed), a will go to  zero, 
provided Ts, Ws and the guard spaces a r e  kept finite. 

2. 32 Signal Design 

We consider now several  obvious questions that arise with respect to the signaling 
scheme just described. The N basic signals were chosen to be time- and frequency- 
shifted replicas of one original signal, and we  could conceivably do better by using the 
same type of time and frequency spacing, but allowing each of the N basic signals to  
be different. Before evaluation of P this question cannot be answered, but it seems 
likely that nothing would be gained by such a scheme. 
p (ylx) wi l l  be the same for a given input signal, no matter how i t  is shifted in the 
aBotted T ,  W space. 
ngood,ll no matter where it is placed in the space. If w e  find one ngood" signal, then 
we can make them all as Itgood11 by replicating the original in time and frequency. This 

- 

e' 
For our model, the density 

h -  
Thus, i f  a basic signal is in some sense Itgood," it should be 
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is quite vague, but in Section IV we shall present some results that reinforce these 
statements. 
one 
nals all have the same p,(ylx). 

Referring to Eq. 1, we a r e  f ree  to specify u(t), but it appears in the analysis only 
through Ts, Ws, and &. 
reasonable signals, there  is no simple relationship between u(t) and &; indeed, finding 

- X, given u(t), consists of finding the eigenvalues of an integral equation, in general, a 
very difficult problem. The inverse problem, of finding a u(t) that generates a particu- 
lar A, is even harder. Since 
one reasonable approach would be to find the "best" &, Ts, Ws,  and ignore the problem 
of transforming & into a u(t). 
type of system, and would give systems designers a goal to aim at. 
cussion of this problem, in the context of an orthogonal signal, unconstrained bandwidth 
analysis, see  Kennedy.' 
this design question could be obtained. 

In any event, it is clearly a simpler mathematical problem to consider just 
in place of a set  of vectors, so we shall continue to suppose that the N basic sig- 

When the basic sign& a r e  all replicas of one signal, what should that signal be? 

Although Ts and Ws can usually be satisfactorily defined for 

is the important quantity in the mathematical model, 

This would provide a bound on the performance of this 
F o r  further dis-  

Even in this simpler case,  however, no definitive answer to 

In Section 111, when we compute bounds to Pe, it will  develop that there a r e  
formidable mathematical obstacles to evaluation of the bounds for a rb i t ra ry  L, so even 
this approach appears to be lost to us. In  the infinite bandwidth case, however, it w a s  
found that equal- strength eigenvalues, where 

1 x = -  
k K '  k =  l , Z  ,..., K,  

minimized the bound to P 

K in an equal-strength system, a good approximation to the performance of a system 
with a rb i t ra ry  ,X could often be obtained. 

and in that sense, were optimum. Furthermore,  by varying e' 

When -_. is given by ( 2 9 ) ,  we findz3 that 

K 

k= 1 
- Yk 

p,(y lx) = ( ltxz/K)-K exp - 1 t xz/K 

K 

k= 1 
Thus y P Z y is a sufficient statistic, with conditional density k 

Therefore, in the special case of an equal-eigenvalue signal, the channel model becomes 
sca la r  input-scalar output. 
fication of T and W provides a complete channel description. These a r e  compelling 
reasons for  restricting the analysis to  equal eigenvalues, but in Section I11 - X w i l l  be 

Note that if  K is presumed to be given by (28), the speci- 

S S 
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kept arbitrary until the need for  (and further justification of) the equal eigenvalue 
as sumption becomes apparent. 

be at least L t 1/B, and W 

pendence at  the output. 
guard space. F o r  example, if B (o r  L) becomes large, an input signal wi l l  be spread a 
large amount in frequency (or  time), and a large guard space is required to separate 
adjacent signals at the channel output. On the other hand, if  B (or  L) is very small, 
there  a r e  no orthogonality problems, but a large guard space is required to obtain inde- 
pendent output signals. 
the need for guard space, in the latter there  is. 

sider several sequential (in time) uses  of a (T, W) block of signals. We could now use 
up any guard space resulting from the 1/B and 1/L t e r m s  by interleaving signals f rom 
another, o r  several other (T, W) blocks. Thus, signals could be placed in a (T, W) block 
with guard spaces of only B in frequency and L in time, while independence can be 
obtained by coding over signals in different blocks that were all independent. 
the same rate R ,  given by (24), the coding constraint length, N could be increased to 

One other question can be considered at this time. We have remarked that T should 
should be at least B t 1/L to ensure orthogonality and inde- 

g 

g 
In some instances, this can result in a large amount of wasted 

In the former instance, there  is no obvious way of circumventing 

In particular, one can artificially obtain independence by means of scrambling. Con- 

Thus for  

while 

Nsc M 

'1 M 2 x2  mn S u  s c  N s c  
n=l  m = l  

(33) 

which would allow (we expect) a decrease in e r r o r  probability. 

over a block of (T, W), but over several  blocks. 
of lessening the guard-space requirements, it is not applicable to the problem of using 
- one (T, W) block f o r  communication. 
does not have this drawback. 

In one block, there  wi l l  be N (given by (23)) basic signals whose outputs a r e  inde- 
pendent and orthogonal, but Nsc basic signals whose outputs a r e  orthogonal. Thus if 

we packed in Nsc signals with T = L and W = B, there  would be Nsc/N= a se t s  of 
g g 

Of course, we have in a sense changed the problem because we a r e  no longer coding 
While this should be a practical method 

We shall outline a "rate-expanding" scheme that 
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N basic signals, where 

(Ts t L t  1 /B) (W s t B t  1 /L) 
a =  

(T ,+L) (W ,+B) 

The elements within any one of these se t s  would be orthogonal t o  and independent of each 
other, but the elements of different sets would, in general, only be orthogonal, not inde- 
pendent. 
mitted, so we could consider sending information over all s e t s  simultaneously. 
would increase our data ra te  to 

But if N is large, we expect reliable communication when any set is t rans-  
This 

Rre = a R ,  (37) 

where the constraint length N is again given by (23), and now 

Lf M x2  mn S N a  r e  =N($). 
n=l  m=l  

If Pe is the average e r r o r  probability f o r  one set  (with constraint length N),  and Pre 
is the probability of an e r r o r  occurring in  at least one of the a sets,  then if  Pe is small, 

(39) 
N Pre = a Pe. 

Since we expect Pe to be decreasing exponentially in N,  the difference between P 
Pe should be negligible. 

and r e  

xm I 

1 K PATHS 
Xm2 

I I 

,i" 

Fig. 4. Equivalent diversity channel. 
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The model just derived may be considered as N independent uses  of a classical 
When the m th diversity channel, with K equal-strength paths, as illustrated in Fig. 4. 

code word, consisting of_xm = (xml,  xm2,.  . . xmN) is transmitted as shown, each input 
component will excite K independent, identically distributed outputs, which may be 
summed to  produce a random variable y, governed by the conditional density function 
of (31). 

The description of the channel and its use just presented is, to  be sure ,  an approxi- 
mate one. This has been necessitated by the complex manner in which the channel oper- 
ates on the input signals. W e  once again emphasize the roughness of the characterization 
of u ( r , f )  by just B and L. Although this may be reasonable when u ( r , f )  is smooth and 
concentrated a s  shown in Fig. 1, if  u ( r , f )  is composed of several  disjoint npiecesn 
(typical for HF  channels, for example), such a gross  simplification obviously omits 
much information about scattering function structure. 
Section IV. 

W e  shall return t o  this point in 

On the other hand, this channel model is essentially a simple one (particularly when 
the equal-eigenvalue assumption is invoked), and for the first time, provides an explicit 
means of taking into account a bandwidth constraint on the input signals. We shall find 
that this simplified model wi l l  still provide some insight into the communication prob- 
lem, and a useful means of estimating system performance. 
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111. BOUNDS T O  ERROR PROBABILITY 

We consider block coding over N uses of the amplitude-continuous, time-discrete 
channel model derived in Section 11. 

minimum attainable e r r o r  probability, making use  of many results presented in 
Appendices. Each bound is found to involve an arbi t rary probability density function 
that must be chosen s o  as to obtain the tightest bound. 
here is the specification of the optimum density and the resulting bound. 
random-coding upper bound to e r r o r  probability is presented first, since it is func- 
tionally simplest and yields results that a r e  typical of all of the bounds. Then the stand- 
ard random-coding upper bound is discussed, along with the sphere-packing lower 

bound. 
and Capacity, and hence determine the true exponential behavior of Pe for that range 
of rates. 

The optimum density 
This corresponds to a finite num- 

We discuss both upper and lower bounds to  Pe, the 

The central problem considered 
The expurgated 

These two bounds a r e  found to  agree exponentially in N for rates between Rcrit 

Some novel aspects of the present work should now be noted. 
just discussed consists of a finite s e t  of impulses. 
be r  of input levels, an unexpected result for a continuous channel. 
packing bound cannot be applied to a continuous channel because the number of possible 
inputs and outputs is unbounded. F o r  this channel, however, the optimality of impulses 
allows derivation of the lower bound, although with extensive modification. The results 
presented in this section are in terms of quantities defined in Section 11, plus an addi- 
tional parameter (p  o r  s) that simplifies the analysis. In Section IV, these parametric 
results wi l l  be converted into forms suitable fo r  obtaining performance estimates for 
some practical systems. 
skip to Section IV. 

The normal sphere- 

The reader who is mainly interested in the applications may 

3 . 1  EXPURGATED BOUND 

Our point of departure is the expurgated upper bound to e r r o r  probability derived 
by Gallager. l o  That bound is directly applicable only to independent uses of a contin- 
uous channel whose input and output a r e  both scalars .  The generalization to a scalar 
input-vector output channel such as the one considered here,  is straightforward (for 
an example, s e e  Yudkin ), s o  the details w i l l  be omitted. When applied to this 24 

channel model, the bound states: If each code word is constrained to satisfy 
N n  NR, 

1 Y  C x L  
n= 1 
p 2 1,  r 2 0,  and any probability density p(x) such that lo x p(x) dx = a < m ,  there exists 
a code for  which 

C N a ,  then for any block length N, any number of code words M = e , any mn 
c o 2  
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A 

e 

lt:x' 

(43) 

73 2 where the quantity AN -c 0 as N - a, provided lo p(x) Ix - a  I 
bility functions to  be considered here  w i l l  satisfy this constraint, so  if N is large,  the 
A N 
one, and the reader unfamiliar with its properties should consult Gallager. 

dx < a. All of the proba- 

te rm can be neglected. This parametric (on p) formulation of the bound is the usual 
We recall 

co 
that Xk 2 0,  C hk = 1. The difficulty l ies  in determining the r, p(x) combination that 

k= 1 
results in the tightest bound to Pe for a given &, p, a ,  that i s ,  

HX(x,xl)l /p dxdxl , 1 r(-2atx2tx:) 
Ex(p,a,L) = -p In 

- 

(44) 

subject to  the constraints 

2 r 2 0, p(x) 2 0,  x p(x) dx = a (45) 

In general, it is possible for a number of local minima to exist, s o  that the problem 
Fortunately, for the particular channel of minimizing over p(x) and r is a difficult one. 

model under consideration here,  Hh(x, x l )  'Ip is a non-negative definite kernel ( see  
Appendix A, Theorem A. 2,  for a proof), and these possible difficulties do not arise.  In 
Theorem A. 1 it is shown that a sufficient condition on r and p(x) to minimize 

subject to  the constraints (45) is 

for  a l l  x 2 0, 0 < p < m, with equality when p(x) > 0. 

may have many solutions, o r  none but, because of the sufficiency, all solutions must 
At this point it is possible that (46) 
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result  in the same (maximum) value of exponent for  the given &, p ,  Q. 

shown that condition (46) is necessary as well as sufficient, but the proof is lengthy and 
tedious. Since we shall l a te r  exhibit solutions to (46), we can afford to dispense with a 

proof of necessity. 

It may also be 

Unfortunately, the determination of the p(x) and r that satisfies condition (46) is a 

very difficult matter. 
r and p(x), and plug them into (46) to see  if  the inequality holds. 

solve the minimization problem for the p ,  Q, 

with the prospect of doing this for arbitrary A, for  all  values of p and Q of interest. 

tion over fading channels, it is worth while to make use of any reasonable approximation 
that simplifies the analysis. Even if the most general problem could be solved, it seems 
likely that the essential nature of the channel would be buried in a maze of details, and 
one would have to  r e so r t  to  more easily evaluable special cases in order to gain insight 
into the basic factors involved. 

In practice, the usual method of flsolutionfl is to  take a particular 

If it does, then r,  p(x) 
under consideration. We are now faced 

Since the purpose of this study is to arrive at a better understanding of communica- 

3. 11 Equal Eigenvalues 

The simplest possibility to  consider is that of equal eigenvalues, 

k =  l , Z , . . . , K .  (47) 

In this case, define 

Exe(p, a ,  K) = -p  In (48) 

H (x ,x  ) = K 1  (49) 

where r ,  p(x) satisfy constraints (45), and the subscript e denotes "equal eigenvalues." 
A simple change of variables proves that 

Thus, as far as the minimization is concerned, we may se t  K = 1, compute Exe(p, Q, l ) ,  

and use (50) to  obtain the result for arbitrary K. 
the range 1 < p < 30 to  0 < p < a~ to allow for K > 1. 

since our theorems on minimization a r e  valid over the whole range 0 < p < 00. Thus, when 
the eigenvalues are equal, 

The only change is that we must loosen 
This involves no additional effort, 

may be completely absorbed into the parameters p and Q 
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fo r  the purposes of minimization on p(x) and r,  a pleasant bonus. 
A s  we have mentioned, this simplification is a good reason for restricting the anal- 

ysis to equal eigenvalues, but in addition, Theorem B. 3 in Appendix B states: 

where 

b -  1 ki 
k= 1 

d 2 ki, (53) 
k= 1 

and inequality (51) is satisfied with equality for any equal eigenvalue system. 
exponent that results from arbi t rary 
with equal eigenvalues, thereby resulting in a further upper bound to Pe. 
is very similar to one derived by Kennedy16 for the infinite-bandwidth, orthogonal sig- 
nal case. 
efficiency factor, relating the performance of a system with arbi t rary eigenvalues to 
that of an equal eigenvalue system with an energy-to-noise ratio per diversity path of 
ad/b. 
eigenvalue sets, thereby indicating that the equal eigenvalue assumption may not be as 
restrictive as it may at first appear. In any event, with equal eigenvalues we may s e t  
K = 1, and condition (46) may be simplified and stated as follows: 

Thus, an 
may be lower-bounded in t e rms  of an exponent 

This bound 

2 The b /d multiplier on the right-hand side of (51) may be interpreted as an 

The orthogonal signal analogy of this bound was found to be fairly good for many 

A sufficient condition for  r ,  p(x) to  minimize 

subject to constraints (45), is 

for 0 < P < 30, with equality when p(x) > .o. In Appendix B, Theorem B. 1 ,  it 
is shown that, if r, p(x) and r l ,  p,(x) both satisfy (54), then r = r and 1’ 
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so that for all practical purposes, if a solution exists, it wi l l  be unique. 
W e  shall digress and consider the zero-rate exponent, attained when p = 00. The 

previous results a r e  invalid at this point (although correct for any p < co), s o  this point 
must be considered separately. W e  choose to do it now because the optimization prob- 
lem turns out to be easiest at p = 03, and yet the results a r e  indicative of those that wil l  
be obtained when p < co. 

3.12 Zero-Rate Exponent 

When the limit p - co is taken, it is easy to show that r = 0 is required for the opti- 
mization, and 

EJw, a ,  X) = -min - - P (XI 

In the equal-eigenvalue case, 

,,CQ pco  

where now 

a 
E ( w , a , K )  = K Exe xe 

W e  may change variables in (57) to  obtain 

, a probability density function with 1 where qk(x) = - 

2 

(56) 

( 5 7 )  

(59) 

The minimum in (60) may be decreased by allowing minimization over the individual 
qk(x), subject to (61), S O  that 
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( 62) 

with equality when X consists of equal eigenvalues. This, together with (51), shows that 

k= 1 (1 

with equality on both sides when & consists of equal eigenvalues. 
we have upper and lower bounds to  the expurgated bound exponent for an arbi t rary eigen- 
value channel in terms of the exponent for a channel with one eigenvalue. 
this point, before evaluation of Exe(m, a ,  l ) ,  w e  do not know how tight these bounds are.  

The derivation of the conditions on the p(x) that optimizes (56) is complicated by the 
fact that In Hh(x, x l )  is not non-negative definite. The derivation, however, only requires 
that In Hk(x,Zl) be non-negative definite with respect to all functions f(x) that can be 
represenTed as  the difference of two equal-energy probability functions. In Theorem A. 2 

it is proved that this is indeed the case. Utilizing this, the same theorem states a con- 
dition on p(x) sufficient for  the maximization of Ex(w, a, - k). 

eigenvalue, this becomes a sufficient condition for p(x) to  optimize E 
to  constraints (45): 

Thus at zero rate, 

Of course, at 

When simplified for  one 
(03, a, l ) ,  subject xe 

fo r  some k 

since we shall now exhibit a p(x) that satisfies the sufficient condition and thus maxi- 
mizes Exe(m, a ,  1). 

with equality when p(x) > 0. We dispense with the question of necessity, 
0’ 

In Theorem B. 2, it is shown that the probability function 

satisfies condition (64) for all a when the parameters p l ,  p2, and xo a r e  correctly 
chosen. Therefore, at zero rate, the optimum p(x) consists of two impulses, one of 
which is at the origin. In Appendix B, expressions are presented relating p l ,  p2, and 
a as functions of x2 This was  done because it was  simpler to express the results in 
terms of x 2  instead of a. Here we  return t o  the more natural formulation, and in 
Figs. 5 and 6 we present graphically the optimum distribution in t e r m s  of a. The 
resulting exponent is presented in Figs. 7 and 8. 

function of a ,  and s o  

0’ 

0 

1 Note that a Exe(m, a ,  1) is a decreasing 

(66) 
1 1 N - Exe(w,  a ,  1) G lim -E 
U a xe (00, a ,  1) 9 E, = 0. 15. 

a-0 
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This is the same zero-rate result that Kennedy found for this channel when an infinite 
bandwidth was  available and orthogonal signals were used. Since a - 0 is the equiva- 
lent of W - 00, this is the expected result. In addition, we find that, a s  a - a, 
Exe(m, a ,  1) - ~ 1 n  a. 

1 

Returning to the bound of (63), we s e e  that 

where the last inequality may be approached by a channel with K equal eigenvalues, as 
K - 00. 
that, - if we consider coding over N channel uses (at zero rate), and were free to choose 
K independently of anything else, then K should go to  infinity, and the infinite bandwidth 
exponent would result. 

sists of any number of equal eigenvalues, the inequalities will be satisfied with equality, 
and a r e  thus as tight as possible. A s  a second example, let&= ($, i, +) and a = 1. 
Numerical evaluation of the bounds shows that 0. 119 S Ex(w, a,  - k) s 0.133, and the 
bounds are fairly tight. We expect, however, that any system with a small number of 
nonzero eigenvalues should be well approximated by some equal-strength eigenvalue 
system, s o  a more severe test of our bounds should be with a system with an infinite 
number of positive kk. A channel with a Gaussian-shaped scattering function, when 
excited with a Gaussian modulation, can be shown to have the eigenvalues X k =  (1-c) c . 
Let c =-and a = 1 for the sake of another numerical example. The lower bound is easy 
to  evaluate, and the upper bound involves a n  infinite sum, which can in turn be bounded 
by computing the first K - 1 significant terms and noting that all of the r e s t  contribute, 

at most, Em C hk. 

would like, but still a reasonable set of bounds. 

W e  shall defer discussion and interpretation of these results, except to note 

1 Consider the two inequalities on either side of YE (m,  a,  - X) in (67). When con- 
X 

k- 1 
1 
2 

0O 

This results in 0. 102 S Ex(oo, a ,X)  - 6 0. 135, not as tight as we 
k= K 

3. 13 Positive Rates 

We now return to  the more general problem of optimization of r and p(x) for values 
Once again, we restrict K = 1, since other values may be of p in the range 0 < p < 00. 

obtained by suitable trade-offs between p and a. 

for  maximization of the exponent when K = 1. 

0 < p < 00 and a > 0, condition (54) must be satisfied by some r, p(x) combination, where 
0 C r S - and p(x) consists of a finite number of impulses. To be precise, p(x) = 

Recall that condition (54) is sufficient 
In Appendix D, it is shown that, for  any 

1 
2P 

N 1  
C p u (x-xn), where N is a finite integer, and 0 6 x i  S z where z is a function 

n o  1 P' P n= 1 
only of p and a ,  and is finite for  0 < p < w and a > 0. 
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Even when armed with the knowledge that a finite s e t  of impulses provides an opti- 
mum, it is still a very difficult problem to actually solve for the optimizing p(x) and r. 
There are some special cases,  however, for which simplifications can be made. The 
first is in the limit as a goes to zero. 

a. Small a 

In this case, it can be shown (Theorem B. 4, Appendix B) that a two-impulse p(x), 
when combined with a suitable value o r  r,  wi l l  asymptotically satisfy the sufficient con- 
dition (54) in  the limit as a goes to zero. To be specific, the optimizing combination 
is 

p(x) = (1 +) uo(x) t % l o ( x - d q  
zO 

1 r = -  -1n Hl(O,$) 
P Z 0  

where z = 3.071. 
exponent, that is, 

The resulting exponent is the same as the low-rate infinite-bandwidth 
0 

Exe(p,a, 1) af 1 0  (z ) = “Eco 

where z 
obtained for all values of p ,  thereby confirming the known’ 
bandwidth is available, expurgation does not improve the bound. 

is the value of z that maximizes fl(z). Thus as a - 0,  the same exponent is 
0 

result that when an infinite 

When p is specified, it is also possible to show that for some small ,  but nonzero, 
a, a two-impulse p(x) wi l l  exactly satisfy condition (54), s o  that a p(x) consisting of two 
impulses is more than just asymptotically optimum. 
values for p and a, under the assumption of a two-impulse p(x), solving for the optimum 
probabilities, positions, and r, and then numerically verifying that the resulting p(x) 
does satisfy (54). Because of the computational difficulties, no general proof for arbi-  
t r a ry  p and Q has been found, but some specific examples have been verified. These 
same computational problems have made it impossible to analytically specify the best  
r, p(x) combination for given values of p and a ,  s o  that w e  a r e  forced to consider a 
numerical solution to the optimization problem. 

The proof amounts to specifying 

b. Numerical Solution 

Let us suppose that a value of r in the range 0 C r - and a se t  of 
We a r e  then 

2P 
impulse positions {x }, n = 1, 2,  ... , N1, have been specified. 
left with the discrete problem: 

n 
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subject t o  the conditions 

N1 

P n = h  c P n =  1, 
n= 1 

The kernel H, (x, x,)'/' is 

3 pnxi = a. 
n= 1 

(73) 

on-negative definite, so that the m 
r . 1  ,.. 1 

trix whose ijth entry 
r (-2atxftx' 

is e ) H1 (xi, xj) 'Ip is also non-negative definite, and thus the quadratic form 
(72) is a convex function of {pn}. 
dratic programming problem, and with the convexity property just mentioned, numerical 
techniques for  solution a r e  well known 25 26 and are conceptually straightforward. 

Unfortunately, if a joint minimization over {p 1, {x,}, r is attempted, difficulties n 
a r e  encountered because the function to be minimized is not a convex function of {x,}. 
This means that several  local minima could exist, and hence the over-all minimization 
is a much harder  problem. Since the problem of minimizing over {pn}, given {xn} and 
r, is readily adapted for  numerical solution on a computer, however, the obvious 
approach is t o  specify a grid of {xn), and minimize over {pn} for a range of values of r. 
A s  remarked earlier,  we  need only consider 0 S r S -and 0 S x2 S z 
variables l i e  within a bounded region. 

This type of minimization problem is known as a qua- 

1 so that all 
2P n P '  

Any permutation of the xn wi l l  result in  the same minimum (this is just a renum- 

Thus the xn may be spaced out as distinct points on the rea l  line 
bering) and making two xn the same is redundant (two impulses at the same position may 
be condensed to one). 
between 0 and 6, and fo r  each selection of {xn} the minimization should be performed 
for  a range of r between 0 and 1/2p. As the grid spacing becomes very small  
(involving a large number of possible impulses), we expect to get very close to  the t rue 
minimizing p(x) and r. 
expect that, as the grid spacing was reduced, more and more impulses should be used 
with sma l l e r  and smaller  probabilities, t o  approximate the continuous solution. Since 
it is known that the optimum p(x) consists of impulses, however, the smaller grid 
spacing should be used merely to find better locations for the impulses that a r e  used, 
and we would expect that the optimizing {pn}for a given grid spacing should contain many 
zero probabilities. 

purpose FORTRAN minimization program obtained elsewhere ,27 and ran the problem 
on the M. I. T. Computation Center's IBM 7094 digital computer. The procedure used 
to  approximate the minimizing p(x) and r was not quite as described above, for the fol- 
lowing reasons: (i) The program could not accept a large number of possible xn a s  

P 

If the minimizing p(x) were a continuous function of x, we would 

This was  confirmed when the computations were performed. 
In o rde r  to c a r r y  out the minimizations just  described, the author modified a multi- 
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inputs, and (ii) great savings in running time could be obtained if a good guess as to the 
optimizing {pn}for a given r,  {x } could be specified in advance. n 
impossible to feed in an extremely fine grid of {x,}. 
as has been pointed out already, only a small  number of xn will have nonzero pn after 
the minimization is performed, so  that once the approximate locations of the best 
impulses a r e  known, the grid spacing need only be reduced in the vicinity of these loca- 
tions. Thus each problem was  run twice, once with a coarse grid to get an approximate 
solution, and again with a finer grid to  get a more accurate answer. 

The first makes it 
This is no real restriction, since, 

The only disadvantage to this method is that, theoretically, if the approximating 
grid is too coarse, we might wind up in the neighborhood of a local, but not universal, 
minimum. 
as a variable, starting near a = 0 (where the solution is known) and gradually increasing 
a .  

optimizing r, {p,} and {xn} were not very different. Thus the minimizing p(x) and r 
were “tracked,ll always starting with a previously known minimum. Moreover, there 
is always the option of plugging any p(x) and r into (54) and confirming whether or not 
it represents a minimum. This amounts to computing many points of a fairly compli- 
cated function, and thus was  done sparingly. One other point to  be noted is that the expo- 
nent is relatively insensitive to  changes in {pn}, {xn} and r in the vicinity of the 
optimum, s o  even if the p(x) and r a r e  only approximately correct,  the exponent wi l l  
still be reasonably accurate. 

For  a given value of p ,  however, the minimization was performed with a 

A s  might be expected, for the same p ,  when values of a a r e  not too far apart, the 

c. Results 

We shall now present and discuss some of the numerical results obtained from the 
procedure just mentioned. 
graphically as functions of a for the case K = 1,  p = 1, in Figs. 9, 10, and 11. With 
regard to  Fig. 9 ,  x1 = 0 for all a (an impulse at the origin) and hence does not show 
up on the logarithmic scale. The other xn a r e  numbered in the order in which they 
appear, as a is increased from zero. Drawing a vertical line at any value of a allows 
one to read off the minimizing impulse positions for that a. Figure 10 presents the 
probabilities corresponding to the positions shown in Fig. 9 ,  numbered accordingly. 
Figure 11  shows the optimizing value of r for K = 1 and several  different values of p,  

including p 1,  as a function of a .  

A s  a first example, the minimizing p(x) and r a r e  presented 

From a study of the solutions to condition (54) of which the previous figures repre-  
sent a typical s e t ,  the following general properties have become apparent. 

The optimum p(x) always contains an impulse at the origin, and this impulse has 
the largest  probability associated with it. It is reasonable to expect that some proba- 
bility would be concentrated at the origin because the variance of the output y is 
smallest when the input, x,  is zero. Therefore this input results, in some sense,  
in a less  spread output distribution than any other, and should be good fo r  information 
communication. Moreover, the energy constraint tends t o  force probability at 

1. 
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small  values of x. 
2. 

zero. 
of x, while its probability decreases. Eventually, a third impulse is required, appearing 
between the other two, then a fourth, and s o  forth ( see  property 5 below). 
is the number of impulses with nonzero probabilities used in the optimum p(x) for a given 
p and K,  then N is a nondecreasing function of a,  and increases in steps of one. 

A s  a is increased for given values of K and p, r decreases monotonically, and 
as a goes to infinity, r goes to an apparent asymptote of r = a/ab, where a and b are 
constants. 

For any given K and p, the solution starts with two impulses when a is near 
A s  a is increased, the impulse not at the origin gets relocated to larger  values 

Thus, if N1 

1 
3 .  

4. If a is held constant and p is varied, N is a nonincreasing function of p, and 1 
decreases in steps of one. 

5. A s  a is increased for a given p, it is interesting to note what happens in the 
neighborhood of a value of a where an extra impulse is added. 
may be rewritten for impulses as 

Sufficient condition (54) 

, zn = x2 and if (74) is satisfied for all z 2 0 ,  where, for convenience, we have se t  z = x 

then {pn}, r, {z,} comprise the optimizing set. For a typical value of a for which two 
impulses is optimum, F(z) wi l l  appear as sketched in Fig. 12, where z1 = 0 and z 2  a r e  

2 
n' 

z2 z, = o  

Fig. 12. Sketch of F(x) vs z when two impulses a r e  optimum. 
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the impulse positions. As  Q is increased almost to  the point where 3 impulses are 

needed, F(z) wi l l  begin to  appear as sketched in Fig. 13a. Figure 13b represents 
F(z) at the breakpoint, where at this value of Q,  p(x) still consists of two impulses 

Fig. 13. (a) F(z) v s  z near breakpoint. 
(b) F(z) v s  z at breakpoint. 

(at $ and s). A s  Q is increased slightly, the new optimum p(x) wi l l  contain a 
third impulse at $, with very small  probability. 
z3 wi l l  be continuously changing as Q is increased. 
is evident, from Fig. 10, that most of its probability comes at the expense of the 
impulse that w a s  added the time before, s ince  that probability undergoes a sharp dip. 

Of course, the positions of z2 and 
When a new impulse is needed it 

Consider the se t s  of ( p ,  Q) for which the optimum p(x) consists of 2 impulses. One 
impulse must always be at the origin, and in F ig .  14, we indicate roughly how the posi- 
tion of the second impulse varies with p and Q. The line going from lower left to upper 
right indicates the line of breakpoints, and the region below this line is the range of p 

and Q ,  where 2 impulses are no longer optimum. The other lines represent constant 
z = x2 in the region where a two-impulse p(x) is optimum. 2 

2 .  

Some exponents resulting from the optimal se t s  of p(x) and r a r e  presented in 
Figs. 15 and 16. 
values of p ,  while the second shows; Exe(p, a ,  1) versus Q. 

ment in the exponent as K was  increased, and as K went to  infinity for any value 
of Q ,  the infinite bandwidth exponent was approached. This is no longer the case 
for P < m. In Fig. 17, we show Exe(p, l , K )  as a function of K for several  values 
of P. When K is increased beyond a certain point the exponent starts decreasing 
again; this corresponds to the fact that the signal energy is being split among too 
many diversity paths. 

value system, as well as an upper bound when p = 00. Unfortunately, it has not 

been possible to find an equally tight upper bound for 0 < p < 00. 

The first of these shows E X e ( p , ~ ,  1) as a function of Q for several  
1 

Recall that, when p = 00 and Q and N were fixed, there w a s  a monotonic improve- 

We shall return to this point in Section IV. 
We have previously found a lower bound to Ex(p,a,A) in t e rms  of an equal eigen- - 

About the best 
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0*16 t T 

L 1 / P = a  

p = 2  

p = l  

0 . 1 4 ~  0.12 >- 
0.10 K 

2 4 6 8 10 

Fig. 17. Exe(p, l , K )  v s  K. 

we can do is to  say  that 

a , h )  is an increasing function of p ,  but it can be This is certainly t rue because Exe(p, 
quite loose because, even at p = 00, the right-hand side can be approached only by letting 
a - 0 or K -. 03, and for p < co, the only way it can be approached is through a - 0. 

- 

d. Large u 

With the exception of the point p = 00, our results are mainly numerical, s o  it is 
F rom the difficult to  say what the behavior of the exponent wi l l  be for very large a. 

previous results,  it appears that as a - 00, the best p(x) will be one with many impulses 
spaced fairly widely apart. The proof of impulse optimality is valid for any finite a ,  

but does not give us much information a s  a - co because the ceiling on impulse positions, 
T, goes to infinity with a. We can, however, obtain a lower bound to the exponent 
by evaluating any particular p(x) and r combination. F o r  this purpose, let 

2 b 2 -1/2p e - ~ ~  P(X) = ax ( l t x  ) , 

2 where a and c a r e  chosen so  that p(x) integrates t o  unity and x p(x) integrates to a ,  

and b is a f r ee  parameter that may be optimized. The factor of ( l t x  ) - 1 / 2 ~  cancels 
with a similar factor in Hl(x,xl)l’P, and allows us to integrate the expression for the 
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exponent. 
mized by choosing b = -1 + l / p ,  and 1: = 0. 

to E 

It may be shown that, as a goes to infinity, the resulting exponent is maxi- 
With these values we  obtain a lower bound 

(p, a,  1) of the form xe 

where U (x, y, z) i s  the confluent hypergeometric function defined by 

( l+t)Y-x- dt , 1 S m e  - zt tX- 1 U(x,y, z) = - 
r (x )  0 

and c i s  chosen to satisfy 

u 1 t-, 2, c 
1 1 2P l J  

(79) 

The U ' s  a r e  reasonably well-known and tabulated functions,28 and it turns out that as 
a - 03, c - 0 to preserve equality in (79). For  small  enough c, we may approximately 
replace the U's by their asymptotes, which a r e  

1 -1 U(x, 2 ,  c) r - C 

(XI 

In c. U(x, 1,  c) = - - 
(XI 

N 1 

- 1  a =  -c In c 
-1 a s  c - 0. Since -c In c > c if c < e , we may write 

Exe(P,a, 1) > P In (In a) (84) 

as a - 03 fo r  0 < p < m. Note that this is invalid a t  p = 00. 

Equation 84 implies that Exe(p, a ,  1) must go to infinity a s  a goes to infinity. 
significance is that, when all other parameters a r e  held fixed, P 
by increasing the available transmitter power, since a is proportional to  P/No. Note 
that the p(x) chosen f o r  this bound i s  the best of a fairly general family defined by (76), 

and might well be about as good as we can do with a continuous probability distribution. 

The 
can be forced to zero e 
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There is some reason to believe that the right-hand side of (84) represents the t rue 
* behavior of Exe(p, a ,  1) as a - m. It is known” that the expurgated-bound exponent for 

the additive Gaussian noise channel, E (p, a ) ,  behaves a s  
xg 

Exg(p,a) T p In a ,  a - 03, 0 < p e 00 (85) 

or ,  in other words, 

E ( p , a ) F  p In E ( m , a ) ,  a - 03, 0 < p  coo. (87) xg xg 

One might conjecture that the expurgated bound for  the present channel also satisfies 

(87). 
Exe(p, a ,  1) 

Since we have previously shown that Exe(w, a ,  1) In a as a - m ,  this would mean 4 
p In In a ,  which is the same as the behavior of the bound just obtained. 

3 . 2  RANDOM-CODING AND SPHERE-PACKING BOUNDS 

The bounds and optimization techniques considered here  a r e  very similar to the 
expurgated bound just discussed, but a r e  more complicated, so that the results obtained 
will be l e s s  complete. We start with the random-coding upper bound to e r r o r  proba- 
bility,” which, when applied to this channel model, states: If each code word is con- 

strained to satisfy Z xmn S N a ,  then for any block length N, any 0 G s G - 

and any probability density p(x) such that $“ x p(x) dx = a < m ,  there exists a code for 

1 
2 9 r 2 0 ,  

N 2  

2 n= 1 

0 

x, 2 where RN was defined earlier,  and 5, - 0 as N - m, provided lo p(x) lx - Q  l 3  dx < 0. 
Readers familiar with the random-coding bound wi l l  note that instead of the more con- 

ventional parameter p ,  we use s = - . This w i l l  later simplify the derivation of the 
lower bound to  Pe. 
usual properties enumerated by Gallager. l o  The critical ra te  Rcrit, i s  now defined a s  
the rate obtained when s = y .  AS in the expurgated bound, we a r e  faced with the prob- 
lem of determining the p(x) and r that result in the tightest bound: 

P 

l + P  
Aside from this parameterization, the bound of (88) and (89) has the 

1 

subject to  the constraints (45). 
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Because of the integral on y, this minimization problem is s o  complex that there i s  
Even in the simpler case of the expur- 

- 
little hope of obtaining results for  arbitrary A. 
gated bound, when the y integral could be removed, an arbi t rary - A w a s  hard enough 
to handle s o  that we  chose to avoid the possibility. Thus necessity dictates that we con- 
strain the analysis to equal eigenvalues systems at the outset. Then, as we have noted, 
the vector y of outputs reduces to a scalar,  and although we a r e  still left with the inte- 
gration of y, i t  is now a single integration. With this simplification, and again with the 
use of the subscript e for equal eigenvalues, the minimization becomes 

- 

- 

where pK(yIx) is given by Eq. 31. 
a, to obtain 

To simplify things, we  normalize x by dividing by 

where 

K- 1 e-y/( 1 t x 2 )  Y 

and the constraints (45) now are 

P* n 

r 2 0 ,  p(x) 3 0 ,  -Io x'p(x) dx = a / K .  (93) 

Unfortunately, it is no longer possible to remove K from the problem, as we did before. 
In Theorem A. 3 in Appendix A ,  it is shown that a sufficient condition for r,  p(x) to  

be optimum in (91) is 

for all x, when 0 < s < 1, and with 

In Theorem D. 5 in Appendix D,  it is shown that, if  0 < s < 1, condition (94) must be 
satisfied by some r, p(x) combination, where 0 < r 6 K ( l - s ) ,  and p(x) is a finite s e t  

of impulses. More exactly, p(x) = C pnuo(x-x ), where N is a finite integer, and 
N1 

n 1 n= 1 
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0 c x i  G z 

0 6 a < m, and K < m. 
1 and not just 0 < s C 

region of s is necessary for  consideration of the lower bound, which we shall now pre- 
sent. 

where zs is a function only of s, a ,  and K, and is finite for  0 < s C 1, 
S' 

Both (94) and the impulsive solution a r e  valid for  all 0 < s < 1,  

as required for the random-coding bound. This extension of the 

In Appendix E,  it is shown that, if  AN < RN < dN, then 

E (rx, a ,  K) = min -K oe 
P (XI 

S (R -A t 6 N  # N N} ] e 

1: p(x) In ( l t x  2 ) dx t In [l=+dx] , 
0 l t x  

where AN and bN go to zero and d 
from the random-coding upper bound to Pe, only in additive factors that go to zero as 

N goes to infinity, and in the difference in the range of s. 
mum wi l l  be in the range 0 < s <-, so a s  N - 00,  the upper and lower bounds exponen- 
tially agree for that range of ra tes ,  and thus describe the true asymptotic behavior of 
this channel model. 
easiest point to consider, as far as the optimization is concerned, so we shall discuss 
it first. 

goes to  infinity. The right-hand side of (96) differs N 

When RN > Rcrit, the maxi- 
1 
2 

As in the expurgated bound, the zero-rate intercept ( s =  1) is the 

3 .  21 Zero-Rate Bound 

When the limit s - 1 is taken, we find that r = 0,  and 

(97) 

I J 

where p(x) must satisfy (93). 
for p(x) to be optimum is 

In Theorem A. 4 it is shown that a sufficient condition 

In ( l t x  2 ) t - [I 30 7 d x j - l  P(XJ S Xo t hlx 2 
l t x  0 l t x l  

for  some A , A and all x, with equality when p(x) > 0. 
0 1  

In Theorem C. 1 in Appendix C ,  it is shown that a p(x) given by (65), w i l l  satisfy (98) 
when the parameters a r e  chosen correctly, so that once again, at zero rate,  two 
impulses a r e  optimum. In Figs. 18 and 19 we present the optimum distribution in t e r m s  
of a, and the exponent is shown in Fig. 20,  together with the expurgated-bound zero- 
ra te  exponent for comparison. In this special case,  K can be normalized into a.  Once 
again, -E 

- 
1 
a oe ( 0 0 ,  a, K) is a decreasing function of a ,  and 

(99) 
1 e E o e ( ~ ,  a, K) S 0. 21 62. 

Note that, as a-0, Eoe(m, a ,  K): 1 . 4 6 E  ( 0 0 ,  a ,  K) and as a-00 ,  Eoe(m, a ,  K ) z 4 E  (x), a ,  K). xe xe 
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I 3. 22 Positive Rates 

single maximum in x, and z is chosen to be that maximum. The resulting exponent 
0 

l is the same a s  the infinite-bandwidth exponent found by Kennedy: 

A s  in the expurgated bound, when p < 00, corresponding here  to s < 1, results a r e  
much harder  t o  obtain, beyond the basic fact that an impulsive p(x) is optimum. 
before, there  a r e  some special cases  for which results may be derived without too much 

1 effort. This point reduces to the p = 1 expurgated bound by 
noting that the integration on y may be performed (at the expense of a double integral 
on x), and results in Exe(l ,  Q, K). This problem has already been considered, so that 
numerical results a r e  already available. 
that a two-impulse p(x), when combined with a suitable value of r, will  asymptotically 
satisfy (94) as Q goes to zero. 

A s  

The first case is for s =y. 

Moreover, i t  can be shown (Theorem C. 2) 

In detail, 

r = K(l-s )  f s/( l -S)@O) 

Aside from the cases  just mentioned, only numerical results a r e  possible. If {xn} 
and r a r e  specified, the function to be minimized is known to be a convex function of 
{pi}. This property may be used to determine conditions29 specifying the best {pn}, 
given {xn} and r, but since the objective function is no longer a quadratic form in {p,}, 
implementation of the problem for computer solution is much more difficult. 
theless, this w a s  done, using the same general program mentioned before2’ a s  a base. 
Unfortunately, because of the integral on y (which must be numerically evaluated at 
each step), running even a small  number of {xn} a s  inputs takes a large amount of 

computer time, so this was done sparingly. 

Never- 

I 3. 23 Capacity 

There is one other case in which some simplifications a r e  possible, and that is the 
determination of capacity, obtained by letting s - 0. In that case, it is easily shown 
that r = 0 provides an optimum, and since the exponent goes to zero as s - 0 ,  the prob- 
lem is a maximization of the rate at which this occurs ra ther  than a maximization of 
the exponent. Denote this maximum rate,  capacity, by C( Q, K) ,  where 
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It may be shown, by methods similar to those used before, that a sufficient condition 
on p(x) for  maximization of C(a,K),  subject to (93) ,  is 

J 

for all x and some y. 
Once again, if w e  consider the limit as a -c 0, it can be shown that two impulses 

a r e  asymptotically optimum, and result in the infinite-bandwidth capacity, which is the 
same as that of an additive Gaussian noise channel with the same value of P/No. It can 
also be shown numerically that two impulses a r e  optimum for a range of small but posi- 
tive a .  

zation of C(a,K), and some results a r e  shown in Fig. 21, where C ( a ,  l) /a is plotted 
against a .  Here again, even small  se t s  of {xn} resulted in  long running times. 

found that K > 1 w a s  uniformly worse than K = 1, for all values of a and K that were 
tried. This is not unexpected, since our expurgated bound work indicated that as p 

became smaller, the optimum value of K decreased, too. 
discussion to Section IV, in which some additional results wi l l  be presented. 

The same program that w a s  used before w a s  modified for  numerical maximi- 

When capacities were computed for channels with K > 1, with N and a fixed, it w a s  

Once again, we defer further 

3 . 3  COMMENTS 

The results given above were quite sketchy, the major limitation being the running 
time of the numerical optimizations. 
obtained with a relatively small  number of computed points. 
Fig. 22 we present the E(R) curve for a channel with K = 1 eigenvalue, and a = 1. 

comparison, the infinite bandwidth E(R) curve is also drawn. 
axes are normalized to a .  

Even so, a quite passable E(R) curve can often be 
A s  an example of this, in 

F o r  
F o r  convenience, both 

A s  long a s  we adhere to the equal-eigenvalue assumption, it is feasible to  generate 
numerical results. 
existing quadratic programming techniques that are basically simple and quite efficient. 
With the random-coding bound, the problem is no longer one of quadratic programming; 

furthermore, the algorithm must perform a numerical integration at each step, so that 
numerical results a r e  just barely feasible. 

When the eigenvalues a r e  no longer equal, the situation changes drastically. F o r  
the expurgated bound, the problem is still one of quadratic programming, so  the 
numerical optimization can still be performed for any finite number of Xk, although it 
will take longer. 
optimum p(x) is impulsive, and problems might arise if a large number of xn a r e  

For the expurgated bound, the optimizing algorithm makes use of 

The only possible drawback is that there is no longer a guarantee that 
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necessary to adequately approximate a continuous p(x). F o r  the random-coding bound, 
there  w i l l  be one extra numerical integration per  step for  each eigenvalue, and that in 

Fig. 22. Normalized E(R) curves, K = 1, a = 1, and 0. 

itself should be enough to almost completely eliminate the possibility of numerical 
results. 
eigenvalues, 

Also note that the lower bound presented here  wi l l  not be valid for unequal 

Once again, we note that our purpose here  was to present results that wi l l  la ter  
be applied to the questions that were raised in Section 11. 
left  much discussion, interpretation, and comparison for Section IV. 

Thus we have purposely 
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IV. RESULTS AND INTERPRETATION 

4.1 DISCUSSION OF RESULTS 

In Section I11 we evaluated both upper and lower bounds to the minimum attainable 
e r r o r  probability, for coding over N independent uses of the channel model derived in 
Section 11. 
eigenvalues (although K may be arbitrary),  and hereafter we shall refer only to equal- 
eigenvalue systems. We note, however, that (at least  for low rates),  a channel with an 
a rb i t ra ry  se t  of eigenvalues has a minimum P that may be upper-bounded in t e r m s  of 
the P attainable with an equal-eigenvalue channel. Equality holds in the bound when 
the a rb i t ra ry  eigenvalues a r e  all equal, and a few examples indicate that the bound might 
be reasonably good for non-equal eigenvalues. Thus the equal-eigenvalue assumption 
may be regarded a s  an approximation to  facilitate analysis and insight, rather than a 
restriction precluding application of the results to r e a l  channels. 

The results a r e  almost exclusively restricted to channels with K equal 

e 
e 

The upper and lower bounds to the minimum Pe confirm that this P is exponentially e 
decreasing in N,  and for a range of ra tes  the bounds agree a s  N becomes large. For 
this range of rates,  then, our bounds represent the t rue  exponential behavior of this 
channel model. Each bound involves an arbitrary probability density function p(x) that 
has to be optimized to obtain the tightest bound. 
always consists of a finite number of impulses, and we shall now discuss the impli- 
cations. 

We found that the optimum density 

4. 11 Significance of p(x) 

The density p(x) may be interpreted as a probability density from which the letters 
for each code word (the modulations xmn) a r e  to be chosen at  random. This is not 
exactly correct,  since to ensure that no code words have energies significantly smaller  
than the average, it is necessary to keep renormalizing p(x) as successive letters of 
each code word a r e  chosen. 
be ignored. An optimum p(x) consisting of an impulsive density then corresponds to 
choosing the input le t ters  from a discrete set of voltage levels. 

For purposes of interpretation, however, this effect may 

For a small  enough value of P/NoW = ao, we found that the optimum p(x) consisted 
of only two impulses, one of which w a s  at the origin. When this modulation level (zero) 
is chosen, we "use" the channel by not sending that particular basic signal. Thus on 
any basic signal, we may not send anything, but when we do, it is always some optimum 
voltage level determined from the location of the second impulse. The zero level cor -  
responds to saving energy so that the optimum amount may be sent on some other basic 
signal. A s  a 

that is not at the origin is placed so that the resulting value of output energy-to-noise 
ratio per diversity path is identical t o  that found by Kennedy to be optimum for orthog- 
onal signals when an infinite bandwidth is available. This result  is independent of the 
number of diversity paths of the basic signals because the ensemble p(x) can be used 

goes to zero (obtained, for example, when W goes to infinity) the impulse 
0 
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to compensate for any value of K. 

A s  a .  increases from zero, two impulses eventually cease to  be optimum, and p(x) 
goes to three impulses, then four, etc. Thus, as the signal-to-noise ratio is increased 
for a fixed bandwidth, there w i l l  be a - se t  of optimum voltage levels to  be used for com- 
munication. This corresponds to the fact that we must use more levels to make best 
use of the increase in available signal power. Furthermore,  if the rate R is increased 
with other parameters held constant, the number of levels also increases  because we 
require more levels to transmit the greater  amount of information. 
recall  that one impulse is always located at the origin, thereby reflecting the fact that 
this input has the smallest output variance, and, of course, the energy constraint also 
tends to keep signal levels low. 

A s  a final note, we  

4. 12 Comparison with the Gaussian Channel 

W e  shall compare the fading channel to an additive Gaussian noise channel with an 
equivalent value of output signal-to-noise ratio per channel use (a detailed discussion 
of the Gaussian channel results has been given by Gallagerlo). 
ference is in the form of the optimum p(x). Here an impulsive density w a s  optimum, 
while for the Gaussian channel, the best p(x) w a s  Gaussian. When the resulting expo- 
nents are evaluated, it is clear  that performance is always better for the Gaussian 
channel. 

The first  major dif- 

A s  representative examples, consider Figs. 23, 24, and 25. The first shows 
1/a Exe(p ,  a ,  1) v s  a (proportional to  P/NoW) fo r  the fading channel with p = 1 and m, 

and the equivalent exponents for the Gaussian channel. Without going into detail, we 
recal l  that p is a parameter (used in Section 111) inversely related to  ra te ,  such that 

p = 00 is zero rate,  p = 1 is critical rate, and p = 0 is capacity. 
on later, along with the normalization with respect to a.  

the Gaussian channel, the infinite-bandwidth exponent may be obtained for - any signaling 
bandwidth, but not for the fading channel. 
to  combat the probability of a deep fade is through sufficient signal diversity, and for 
small  W ,  even at small rates, there is not enough diversity available. 

It is known15 that the capacity of the infinite-bandwidth fading channel is the same as 
that of an equivalent Gaussian channel, a fact which, although not apparent from the 
figures (as a - 0),  was shown in Section 111. Note the vast difference in the rate of 
approach to  this asymptote for  the two channels. 

This wi l l  be elaborated 
Note that, at zero ra te  for  

This is due to the fact that the only known way 

Figures  24 and 25 show equivalent capacities for the fading and nonfading channels. 

4. 13 Comparison with Orthogonal Signals 

We have already noted that, as a goes to zero, this channel model provides the 
orthogonal- signal, infinite -bandwidth exponent. Furthermore,  the optimizing density 
consists of two impulses, one at the origin, and one at a level that excites the same 
value of output energy-to-noise ratio per  diversity path that was optimum in the 
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orthogonal-signal analysis. 
degradation in performance, owing to lack of sufficient bandwidth, becomes more severe. 
This degradation may be moderate at low ra tes ,  but w i l l  be quite severe at rates close 
to  capacity. 

We note f rom Figs. 23-25 that as the ra te  is increased, the 

The infinite-bandwidth analysis revealed that the optimum fading channel w a s  one 
Unfortunately, it has not been possible to show that the same 

A s  a final 
with equal eigenvalues. 
is t rue for finite bandwidths, although we speculate that such is the case. 
comment, we note that, with infinite bandwidth, Kennedy w a s  able to  bound the perfor- 
mance of a channel with arbitrary eigenvalues in t e r m s  of the performance of an equal- 
eigenvalue channel, for all rates. This has  been possible here  only for low rates, 
although our bound is completely analogous to his. 

4.2 APPLICATION TO THE COMMUNICATION PROBLEM 

Up to this point, the results of Section I11 have been presented on a per channel use 
basis,  and now we shall relate them back to the communication scheme set  forth at the 
end of Section 11. 

4. 21 Exponent-Rate Curves 

Since the problem has been formulated as the determination of exponential bounds 
on the minimum P 

of performance levels is the exponent-rate curve. 
attainable through coding, the quantity of interest  for determination e 

We have shown that 

with additive factors omitted in the exponents that become negligible as N goes to  
infinity. In Section I11 a parameter, s, was used to  simplify derivation of the lower 
bound, but f o r  uniformity of notation, we now use p = s/(l-s). 

of p,  and we shall describe the random-coding bound (the top inequality of (106)) as typi- 
cal. 
of Section 11, and then summarize the analogous results for  the other schemes. 
that 

These bounds all have the same basic form, differing only in subscripts and ranges 

We consider application of this bound to the scrambling scheme outlined at the end 
Recall 
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N = TW/Qsc 

Plugging these into (106) yields 

in which we have defined 

a 0 = P/NoW. (115) 

Given the basic signals (in this model, jus t  a specification of Ts and Ws), together 
with the parameters  B, L, W, and P/No, we may generate E (R) given parametrically 
in (1  14). As discussed elsewhere," Esc(R) may be constructed a s  the upper envelope 
of the set  of straight lines with slopes (-p) and intercepts Eoe(p, aOQSC, K)/aoQsc. Note 
that K and Qsc depend on Ts  and Ws, and w e  a r e  free to choose these quantities to 
obtain the largest exponent (subject to the rough constraint TsWs 2 1). 

p ,  the intercept should be maximized, so we must compute 

s c  

For any given 

1 
max - Eoe(p, aOQSC, K). 

T,, Ws aoQsc 

In general, this must be done numerically, although, a s  we shall see,  there a r e  many 
cases  for which this is not necessary. 

In Table 2, we present the random-coding bound for the three schemes proposed at 
the end of Section 11, before optimization on T, and Ws. 
the sphere-packing lower bound, replace 0 < p S 1 by 0 < p < co, and for the expurgated 
bound, replace Eoe by Exe and 0 < p C 1 by p 2 1. Note that, since Qsc < Q, Ere(R) < 
Esc(R). Also (in Section 111). we found that Eoe(p, P, K)/P w a s  a decreasing function of 
P, so thatE(R) < Esc(R), too. 
largest  exponent. 

making the optimization difficult. 
mization on T 

To get equivalent results for 

Thus, of the three schemes, scrambling gives the 

Unfortunately, given R ,  the optimum value of p w i l l  depend on Ts and Ws, thereby 
Thus a reasonable procedure is to perform the maxi- 

and Ws for several  different values of p ,  draw the resulting straight 
S 
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Table 2. Exponent-rate curves for a rb i t ra ry  Ts, Ws. 

Scheme Random -C oding Exponent 

Scrambling E (R) = max 
sc  o<ps 1 

No 
Scrambling OQ - p ( - ) ]  

E(R) = max 
O<P-(l 

Rate - 
Expanding 

Ere(R) = max 
O<pS 1 Q 

Parameters  a = P / N o W  
0 

Q = (Ts tLt l /B)(WstBt l /L)  

lines, and then get the resulting exponent numerically for the rate of interest. This dif- 
ficulty does not apply at  the end points of the curve, since p = co corresponds to R = 0,  

and p = 0 corresponds to capacity, independent of a l l  other parameters.  
sider these points first. 

We shall con- 

4. 22 Zero Rate 

At zero rate, p = 00, independent of all other parameters ,  Unfortunately, the upper 
and lower bounds do not agree at this point, so they must be considered separately. The 
applicable upper bound is the expurgated bound, for which the problem becomes (note 
that lim pR = 0): 

R-0 

E x e ( ~ ,  a0QSC, K) Exe(m, QoQ,, K ’  1) E (0) = max = max 9 

QoQsc Ts’ ws aoQsc/K 
sc 

Ts,Ws 

in which Eq. 59 has been used. 
When BL 3 1, K = Qsc, independent of Ts and Ws, and for BL < 1, the minimization 

Thus the problem reduces to  the minimization of Qsc/K. 



yields Q /K = 1 for  any TsWs = 1 signal. Thus sc 

which is easily evaluated from Fig. 23. 
F o r  the nonscrambled scheme, the optimizing signals are 

in which case 

BL 2 1 

A s  a practical matter,  TsWs = a does not have to be too large,  for  the exponent in (1 19) 
will be approximately attained if 

When BL 2 1, the scrambled and nonscrambled exponents a r e  the same,  while for 
BL < 1, the nonscrambling bandwidth must be increased by a factor of 1/BL before the 
exponents a r e  equivalent. When BL 2 1, both schemes are limited primarily by the 
guard space necessary to  ensure orthogonality, but when BL > 1, the nonscrambled 
scheme is penalized by the large guard spaces necessary for providing independence 
between output signals. Without scrambling, the individual basic signals take up more 
a r e a  in the T W  plane, thereby reducing the effects of the larger  guard-space require- 
ments. 

For  the rate-expanding scheme, when BL 2 1, the basic signals of (1 18) a r e  again 
optimum, with the result that the same exponents are obtained for  all three 
schemes. 
shown, however, that i f  the basic signals of (118) a r e  chosen, we arr ive at the non- 
scrambled exponent, so that E(0) G Ere(0) s Esc(0). In Table 3 w e  list the optimized 
zero-rate expurgated-bound exponents for these signaling schemes. 

For  many channels of 

interest ,  however, an improved zero-rate lower  bound can be derived that agrees  with 
this zero-rate expurgated upper bound, 12’ 30 so there is reason to believe that these 
exponents represent the t rue zero-rate channel behavior. When the sphere-packing 
zero-rate lower bound is evaluated, recall  that 

When BL < 1, the optimization must be performed numerically. It can be 

Note that these exponents represent a n  upper bound to Pe. 
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which permits easy optimization on the input signals. 
the same as those for  the upper bound, so that the corresponding lower bound resul ts  
may be read from Table 3 with Exe replaced by Eoe. 
bound exponent evaluation. 

In fact, the optimum signals a r e  

Figure 26 may be used for  lower 

BL < 1 

Table 3. Optimized zero-rate expurgated-bound exponents. 

a a -  
E(O) = -Exe BL ( 00, E, ao 1) 

0 

I Scheme 

Scrambling 

No 
Scrambling 

Rate - 
Expanding 

Exponent I Signals 

TsWs = 1 

n 

K E ( 0 )  = - 
aOQ 

r e  BL < 1 unknown 

These upper and lower bounds a r e  different, but the optimizing signals a r e  the same, 
so whatever the actual exponent may be, the choice of input signals presented in Table 3 

is probably a good one. 

4. 23  Capacity 

Once again, because p = 0 at capacity (defined as the largest rate at which a positive 
exponent may be obtained), independent of other parameters,  the results are simpler 
than in the general case. F o r  scrambled signals, 

Recall that given aOQSC, K should be minimized, and given K, Q 
mized. a r e  simultaneously minimized by 

should be mini- sc 
It turns out that K and Q s c  

T=&, S w = E  S 
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for all BL, with the resulting capacity 

Without scrambling, 

Once again, for all BL, Q and K a r e  simultaneously minimized by the signals of (124),  

with resulting capacity 

F o r  the rate-expanding scheme, Cre = C 

optimum. 
ities when BL gets large or small. 

f o r  al l  BL, so  the same input signals a r e  
These results a r e  summarized i n  Table 4, together with the limiting capac- 

s c  

1 A graph of C ( a ,  1) w a s  presented in Fig. 24. On account of the computational dif- 
ficulties mentioned in Section 111, we do not have sufficient data to draw equivalent 

curves for larger  values of K. 
and the variation o f a C ( a ,  K) with K is not too large in the vicinity of K = 1, so Fig. 24 

may be used in those cases  for the estimation of capacities. 

Many channels of interest have BL 5 lo- ' ,  however, 
1 

4 .  24  Other Rates 

At r a t e s  between zero and capacity, the optimization is more complex. We first 
consider the simplest case, that of the expurgated bound. 

a. Expurgated Bound 

With the use of Eq. 50, we find 

L J 

For a given K,  Qsc is minimized by choosing T W = 1, so that Q s c / ~  = 1, and K 

should then be minimized. This is accomplished by using the signals of ( 1  24), with the 
resulting exponent 

s s  

Esc(R) = max 
pa1  oExe 0 (1ttJBE) 2 '  a0, 1}- .(A) P/No I '  1 
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for all  BL. 
Without scrambling, the unoptimized exponent is given by (128) with the sc sub- 

scripts removed. 
with exceptions when BL is much larger  or  smaller  than unity. 
Q '2 Qsc and we can obtain the scrambling exponent; in the latter case, Q 2 K/BL, which 

implies that K should be minimized, and the signals of (124) a r e  again optimum. 

F o r  this situation, the optimization must in general be numerical, 
In the former case, 

The rate-expanding exponent is given by 

and, in this case,  the maximization over basic signals is hardest to perform. 
when BL >> 1, when the exponent wi l l  be the same as both the scrambled and non- 
scrampled exponents, Ere(R) must be evaluated numerically. 
marized in Table 5. 

Except 

These results a r e  sum- 

b. Random-Coding Bound 

For this bound, there is little that we can do except resor t  to a numerical optimiza- 
tion, and the nonoptimized exponents have already been summarized in Table 2. There 
is one further computation that may easily be performed, and that is the evaluation of 
the bound for  a particular signal set. 
which yield reasonably simple results and have proved optimum in many cases. 
these signals, 

For that purpose, we choose the signals of (4. 19), 

For  

Qsc = K = ( 1 + m ) '  

which may be plugged directly into Table 2. We note the asymptotic forms  for large 
and small  BL in Table 6. 

4. 25 Comments 

We have considered application of the results of Section I11 to the communication 
schemes outlined in Section 11. 
basic signals of arbi t rary Ts and Ws, and in  many cases,  the optimum signals could be 
determined without resorting to numerical measures. The general results appear to be 
the following. 

about equivalent. 

Parametr ic  exponent-rate curves were presented for 

1. The scrambling scheme is uniformly best, although for BL 2 100, all three a r e  

When BL ,< IO-', the non-scrambled scheme requires an increase in bandwidth 2. 
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Table 6. Approximate random-coding exponents for the signals of Eq. 124. 

2 
210 

2 c10- 

Scheme 

A 11 

Scrambling 

No 
Scrambling 

Rate 
Expanding 

Approximate Exponent 

Eoe(P, aoBL, BL) 
ocpe1 [ aoBL 

Eoe(P, ao, 1) 

a 
0 

E (R) = max 
ocpc 1 s c  

E ( R ) =  max BL 
r e  ocpc 1 

by a factor of 1/BL to get the exponent attainable by scrambling. 

and has the same capacity as that attainable through scrambling. 
(3) The rate-expanding scheme appears to lie between the other two in exponent, 

(4) For scrambling, basic signals with Ts = A, Ws = & - a p p e a r  to be optimum. 
These signals, with their associated guard spaces, take up l e s s  space in the TW plane 
than any others, indicating that it is better to use many basic signals, each with a small 
amount of diversity, than to provide more diversity per  signal with a corresponding 
decrease in  the coding constraint length. 

(5) When scrambling is considered, la rger  values of BL result in la rger  e r r o r  
probabilities (with the exception of infinite bandwidth o r  zero rate operation). 
scrambling, small  values of BL a r e  also bad because of the large guard spaces required 
for independence. 

Without 

We shall apply some of these results to the computation of numerical examples. 

4 . 3  NUMERICAL EXAMPLES 

We shall illustrate how the preceding results can be applied to the estimation of per-  
A s  a first example, consider the generation of an exponent-rate curve formance levels. 

for  the scrambling scheme, used on any channel with a value BL 
the basic signals of ( 1  24) a r e  used, since they a r e  optimum f o r  the expurgated bound 
and capacity, and we speculate that they a r e  at least  good (and perhaps optimum) 
for  the random-coding bound, too. With these preliminaries, and given P/No and W, 
an exponent-rate curve can be drawn, as discussed in section 4. 21. In Fig. 27, we 

2 10- . Assume that 
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EXPURGATED BOUND 

0.2 - P l  

RANDOM - CODING BOUND \ 

Fig. 27. Sample exponent-rate curves. 

present a set of such curves (upper bounds only), parametric on Q 

R (nats/sec) has been normalized by P/No,  and may be converted to  bits/sec by mul- 
tiplying by l. 44. 

Consider applying these curves to  communication over a tropospheric scatter chan- 
nel, with a value of P/No= lo5, and B =  lOHz, L =  lO-'sec, so that B L =  Each basic 
signal is then assumed to have Ts = 300 psec, Ws = 3 kHz. A value of a. = 0.1 corresponds 
to  W = 1 MHz, a0 = 1 corresponds to W = 100 kHz, etc., and - = 0.1 on the graph co r re -  

sponds to a rate of 14.4kbits/sec. Suppose fo r  example, that we are allowed a bandwidth 
of W = 100 kHz, and code over a constraint length N = 300. This corresponds to  a block in 
t ime of T = 3 msec, but remember that we  are  evaluating the scrambling scheme, so that 
the 300 basic signals involved in one code word are actually interleaved among many 

. The capacity of such blocks. F o r  a rate of 14.4kbits/sec, the resulting Pe= e 
a signal-channel combination is approximately 28 kbits/sec. 

= P/NoW. The ra te  
0 

R 

P/No 0 

- -6. 6~ - 10-3 

A s  a second example, we could consider computing the bandwidth required to 
attain q times the infinite bandwidth exponent (0 <q < 1). Since our data are best  at 
low ra tes ,  where we can apply the expurgated bound, we shall use this bound for 
exponent estimation. When this is done for  communication without scrambling over 
the W e s t  Ford orbital dipole belt (BL= for a value of P/No = 10 , the result 
is as shown in Fig. 28. We note that - * - - 0. 03.corresponds to a bit ra te  of 

430 bits/sec (which is indeed a low rate!), but only lack of specific computed data 
prevents u s  from extending these curves to any rates  desired. 

4 

P/N0 

In Fig. 29, we illustrate the effect of an increase in BL on an exponent-rate 
curve for  scrambled signals. 
sents any channel with BL C 

All curves are for  Q~ = 1, and the upper curve repre-  
while the others show the effects of increasing 
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q =0.6 

q =0.5 
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0.03 0.04 & 0 0.01 0.02 

Fig. 28. Bandwidth required for  an exponent of q t imes  
the infinite -bandwidth exponent. 

0.15 

0.10 

0.05 

, BL I 10-2 

I I 7 
O O  0.05 0.10 0. I 

Fig. 29. Change in exponent for a change in BL. 
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BL in powers of ten. Although the lower two plots a r e  incomplete because of lack of 
data for higher rates, it is evident that the exponent is greatly reduced as BL increases 

beyond unity. 
In some cases,  our general assumption that u ( r ,  f) is a unimodal function is obviously 

A s  remarked earlier, the zero-rate intercept is independent of BL. 

incorrect. 
ionosphere, which clearly reveals the presence of three separate paths. 
the scattering function is approximately described by B = 1 Hz and L1 = 
the total function takes up B = 1 Hz and L = 5 X 

In Fig. 30 we show the estimated scattering function for the F layer of the 
Each piece of 

sec, but 
sec. 

Fig. 30. Typical scattering function for HF propagation. 

If a basic signal has a bandwidth greater than the reciprocal of the range difference 
between adjacent paths (Ws ? . + l o 4  Hz) ,  the paths wi l l  be resolvable; that is, the contri- 
butions to  the total received process from each of the three paths can be approximately 
separated. Since each path is made up of a different group of scatterers,  these three 
received components should be independent, and the resulting signal diversity wi l l  be 
approximately 

K1 = 3(1tBTs)( l tL1Ws) .  (133) 

F o r  orthogonal output signals we still require guard spaces of B and L, however. 
obtain independent output signals, additional guard spaces of approximately 1/B in 
t ime and l/L1 in frequency are required, owing to  the path resolvability. When 
Ws RlO Hz, the paths w i l l  not be resolvable, and the scattering function should 
have an effect comparable to that of a unimodal scattering function described by 
B and L. 

To 

4 

Consider the computation of the expurgated bound for this channel. We note 

that BL is much less than unity, so w e  can apply our previous asymptotic results. 

69 



4 F o r  the case W <10 Hz, we can apply the results of Table 5 directly. Using the signals - 
of Eq. 124 results in a value Ws = 50 Hz, well under the limit of 10 Hz, so that 4 S 

Exe(P, ao, 1) 
Esc(R) = [ a.  - (&)] (1 34) 

p 21 

and 
a r e  

a 

BL 
0 

E(R) = max 
pal 

When Ws > 

L -1 

4 10 Hz and scrambling is used, our previous discussion implies 

max 
p2l psc 

(135) 

now numerical optimization is required to determine the best signals. 
that, within this resolvability framework, the basic signals should be made as much 

Indications 

4 like those of (124) as possible, so we consider evaluation of (137) with Ws = 10 , Ts = 
loe4. In this case, 

Without scrambling, 

P lxe{ 3( l tBTs)( l t L I W s )  
E(R) = rnax 

p 21 P 

a o( T st Lt 1 /B) (W B t  1 /L ) 
o =  

3( l tBTs)( l tLIWs) 

Evaluation of this scheme with the same basic signals leads to  
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In this case,  both with and without scrambling, a smaller  exponent is obtained by 
making the paths resolvable. This resolvability results in a smaller  amount of diversity 

for a given input signal, but the large bandwidth required by a basic signal to obtain 
resolvability excessively decreases the number of basic signals available for coding. 

4.4 SIGNAL DESIGN 

Up to this point, all results have been for the case of basic signals that a r e  just t ime 
and frequency translates of one another, and so a r e  identical for the purposes of our 
analysis. In Section 11, we remarked that, before evaluation of performance estimates, 
there  w a s  no way of determining whether this choice of a basic signaling se t  w a s  a good 
one o r  not, although we speculated that such w a s  the case. We now return to that ques- 
tion, and show that, in one situation at least, this choice of basic signals is optimum. 

Since the results in Section I11 a r e  only valid for equal-eigenvalue basic signals, 
we must res t r ic t  the analysis to that case, but we now allow different basic signals 
to have different orders  of diversity, K,  obtained by using different values of Ts and 
Ws on different basic signals. To make matters  as simple a s  possible, w e  consider 
only the scrambling scheme, and use the expurgated bound for exponent estimation. 

Let the nth basic signal have t ime duration Tn and bandwidth Wn. If we allow the 
usual guard spaces of B and L, each basic signal may be considered to use  an area 

I 

in the TW plane, with a diversity 

B L 2  1 

(1 43) 
K n ={Qn’ ( 1 +B Tn) ( 1 + LWn), B L e  1 

If unimportant end effects and integer constraints a r e  neglected, the bandwidth con- 
straint may be expressed as 

Q n = T W .  
n= 1 

It may be shown, in a derivation similar to Ebert’s, that 

H Kn (x, xl) dxdx,] - p (L)} P/No , 

(144) 

2 where Sn = J: x pn(x) dx, and HK (x,x ) is defined in Eq. 49. The right-hand side of 
n 1  
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(145) is to  be maximized on {pn(x), r , T n ,  Wn}, subject to  (144) and the additional con- 
straints that pn(x) be a probability function and 

P T  , T n W n 2 1 ,  r 2 0 .  

n= 1 

The maximum can obviously be increased by allowing r to vary with n, subject to  
the constraints rn 2 0. In that case 

Equality will hold in (147) if Sn and Kn a r e  independent of n, since the same value of r 
is then optimum for  all n. 
of N,  the number of basic signals. 
Kn  on any particular signal, Q 
TnWn = 1, in  which case Qn = Kn. 

F o r  a given {Sn, Kn}, Qn enters only in the determination 
The larger N ,  the larger  the exponent, so  given 

This is achieved by choosing should be minimized. n 
The problem has now been reduced to 

N 
P 

subject t o  the constraints 

The constraint on Kn  may be changed to Kn  2 0, and if  the solution to this new problem 
has Kn 2 (l+m)‘, then it wi l l  also be a solution to  the problem of interest. 

of S and K. 
Kuhn-Tucker t h e ~ r e m , ’ ~  in which case it is easily shown that, given N, Kn  = TW/N 
and Sn = PT/NoN provide the maximum. 
a r e  optimum at zero rate because the inequality of (147) becomes an equality for  iden- 
tical basic signals. 

In Theorem B. 5 (Appendix B) it is shown that Exe(%, S, K) is a jointly concave function 
F o r  this situation, the maximization conditions have been given by the 

Thus, for scrambling, identical basic signals 

The corresponding exponent is 

for  any se t  of identical basic signals with TsWs = 1, which agrees  with a previous result. 
When p < co, recall,  from Section 111, that a typical Exe(p, S, K) appears as sketched 

in Fig. 31, thereby illustrating the fact that Exe(p, S, K) is not even concave in K, much 
less jointly concave in K and S. F o r  specified p and S, however, an optimum basic 



signal can never have a value of K greater  than KO, for then K could be reduced to KO, 
which decreases  the signal a r ea ,  and allows a simultaneous increase in exponent, Thus 
it is possible that, for the range of K that is of interest, the function could be jointly 
concave, but this remains speculative, and the optimum {Sn, Kn} is still unknown. 

Fig. 31. Sketch of a typical Exe(p, S, K) versus  K. 

The preceding discussion w a s  just meant to provide additional justification for our 
Even at zero rate,  belief that identical basic signals provide the greatest exponent. 

however, we can make no conclusive statements, for two reasons: 
1. We do not have an expression for the true exponent (the upper and lower bounds 

do not exponentially agree at zero rate). 
2. We cannot evaluate exponents for arbitrary A. 

* 
4. 41 One-Dimensional Signaling 

A l l  of our  previous work w a s  done under the assumption that basic signals were 
spaced both in t ime and frequency. 
Ws = W or T 
that this cannot be obtained from our previous analysis because all signals were assumed 
to have attached guard spaces. This is intuitively attractive if, for example, B o r  L 

We now consider signals designed so  that either 
= T,  thereby eliminating the need for guard spaces in one dimension. Note 

S 

is very large or small, in which case a considerable amount of guard space might be 
eliminated without scrambling. We shall now show that little improvement is to be 
expected from such methods. 

Consider first, basic signals that take up the entire available bandwidth, Ws = W. 
To avoid a lengthy discussion, we only consider zero-rate signaling. 
we find 

With scrambling, 

* 
This section is tangential to the main discussion and may be skipped by the 

casual reader .  
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r ‘  1 t B/W 
B L 2 1  

Psc = “ O I  Ts BL < 1 

To maximize the exponent, Ts should be minimized, so that Ts = 1/W and 

all BL. 0 
a 

Psc = 1 t B/W’ 

(150) - 

Thus at zero rate,  for scrambled signals, we have improved results for all BL, although 
i f  B/W is small, as it often i s ,  the improvement is negligible. F o r  R > 0, a numerical 
optimization over T is necessary, and this type of signal design, depending on the 
parameters,  may result  either in improvement or degradation in performance. 

S 

Without scrambling, the comparable results a r e  

] B L 2 1  1 

[l t B/W [ l  BTstBL 

BL ] B L < 1 .  1 
BL( 1 t 1 /LW) [l  ’ B T s t  1 

In each case, Ts should be large, with the result that 

BL 2 1 
c1 t Ig/w 

Once again, w e  find uniform improvement, which will be significant if  B/W o r  1/LW is 
at least  comparable to unity, the latter of which might be reasonable for  some tropo- 
spheric scatter channels. Away from zero rate,  the same comments hold as fo r  
scrambling. 

rate, after optimization on Ws, we find 
W e  can also consider the analogous situation, when Ts = T. In this case, at zero 

74 



B L 2 1  1 

1 t L/T 

- ] B L < l .  
1 t ~ / B T  

(1 57) 

Once again, we have an apparent increase in exponent with this type of signal design, 
which becomes substantial when L/T o r  1/BT is unity o r  larger. We s t r e s s  the word 
apparent for  several  reasons. First, consideration of scrambling implies sequential 
(in time) transmission of blocks of signals, between which we require a separation of 
L sec, o r  more ,  to ensure orthogonality. This has  been ignored in  the discussion, and 
inclusion of such guard spaces brings us  back to the normal scrambled-signals analysis. 

When considering the "one-shot" channel usage without scrambling, this difficulty 
does not occur, but a more fundamental question arises.  In particular, E(0) is maxi- 
mized by T - 0, and results in the infinite-bandwidth exponent. But, for the determina- 
tion of Pe, E(0) must be multiplied by T ,  so that in this case the resulting e r r o r  

e probability goes to unity. 
only if there  is some T comparable t o  (o r  smaller than) L o r  1/B, which results in 
reasonable e r r o r  probabilities. The exponent E(O),will be valid only for that T, and as 
T is increased E(0) wi l l  decrease until it approaches the lower bound given by the 
original signaling scheme. 

This scheme may result in a substantial improvement in P 

Also note that the bounds used here  a r e  tight only as N - 00, and with the signals 
just proposed, T - m no longer implies N - P ,  so that the bounds may not give a good 
indication about the t rue  exponential behavior. F o r  R > 0, the situation is again 
numerical. 
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V. SUMMARY AND CONCLUSIONS 

We shall briefly summarize the major points of this research,  give some conclusions 
about estimation of performance levels, and mention some possibilites for further work 
on the problem. 

5 .1  SUMMARY 

Our central problem concerned digital communication over fading-dispersive chan- 
nels, subject t o  a bandwidth constraint on the input signals. The channel model con- 
sidered here w a s  a n  extremely approximate one, yet it reflects the major channel 

characteristics. We considered coding over a specific s e t  of basic input signals, namely 
one that resulted in  independent and orthogonal outputs, a choice that reduced the prob- 
lem to communication over a diversity channel. 
different signaling schemes have been outlined. 

Within this framework, several  

We derived upper and lower bounds to Pe, the minimum attainable e r r o r  probability, 
which were exponentially decreasing in the signal duration, T .  These bounds agreed in 
exponent for a range of rates in the limit of large T; thus, they give the true asymptotic 
behavior of this signal-channel combination for  that range of rates.  
signals that optimized the bounds had basic signal modulations chosen from a finite set  
of discrete voltage levels. This result w a s  used to evaluate parametric exponent-rate 
curves in terms of the important signal and channel characteristics. We investigated 
the intefactions of the channel with the signals and their effects upon over-all system 
performance. 

We found that the 

Our results were found to agree with the previously known infinite-bandwidth, 
For  orthogonal-signal exponents in the limit as available bandwidth goes to infinity. 

finite bandwidths, we illustrated the manner in which the present results might be used 
in the estimation of system performance, and we considered the question of design of 
optimum basic signals. The major stumbling block was that, even with a s  simple a 
characterization of the channel as the one used here,  the problem is basically numerical, 
making absolute statements about the nature of parameter interactions impossible, 
although we can evaluate enough special cases  to get some good indications. 

5.2 CONCLUSIONS 

The difficulties encountered in evaluation of the bounds to Pe make it impossible to 
draw conclusions of great generality, but some trends of channel behavior and perfor- 
mance may be stated. 

1. With the methods and results presented here,  it is possible to make some rough 
performance estimates for coding over reasonable signaling schemes. 
mates provide ultimate performance limits fo r  coding over many commonly used diver- 
sity schemes. 

bandwidth, channels with BL > 1 a r e  generally inferior to those with smaller  values 

Also, these esti- 

2. For this type of signaling, except at zero rate or with an infinite available 

76 



of BL. Unless something like scrambling is done, channels with BL << 1 wi l l  also give 
poor performance, because of the large guard spaces required to ensure independence 
between signals. 

nals, while for BL < 1, nonscrambled signals require a bandwidth increase of a factor 
of approximately 1/BL to obtain a value of P equal to that attainable by scrambling. 

3.  For  BL > 1, there is little difference between scrambled and nonscrambled sig- 

e 
W e  close with the speculation that, if one is interested in "one-shot" channel use, 

that is, the performance available within a block of time T and bandwidth W, the rate- 
expanding scheme proposed at the end of Section I1 may provide a reasonable estimate 
because it does not suffer quite a s  much from independence requirements as the scheme 
that was originally proposed. Unfortunately, it is also the most difficult t o  evaluate. 
Of course, if  many blocks a r e  used, and it is feasible to interleave signals among many 
blocks, the scrambling exponent w i l l  be better, as well as the easiest to evaluate. 

5.3 FUTURE WORK 

There a r e  openings for more work on this problem along two fronts: analytical and 
In the analytical category, the bound presented here, relating performance numerical. 

of channels with arbi t rary eigenvalues to that of equal eigenvalue channels, is valid only 
fo r  low rates .  A similar bound may be derivable for the random-coding case, too, 
although some time w a s  spent in an unsuccessful search for one. Furthermore,  we 

suspect that equal-eigenvalue basic signals are optimum, and it might be possible to 
prove this. Last, although it is in some respects a singular case, zero rate is by far 
the easiest  point to evaluate, and it would be worth while to determine the true exponent 
for this rate.  Since an improved zero-rate lower bound that agrees  with the upper 
bound can in  some cases by derived, the same m a y  be true here. 

sidered. F o r  the expurgated bound, we obtained many numerical results, and any others 
desired can  be easily computed, a s  long as the eigenvalues a r e  equal. Even for nonequal 
eigenvalues, because of the quadratic nature of the problem, i t  should be possible to 
obtain results equivalent to those in Section 111, provided there is only a smal l  number 
of significant Xk. The only possible trouble may a r i se  because, with nonequal eigen- 
values, an impulsive p(x) m y  no longer be optimum, and a large number of impulses 
may be necessary to approximate a continuous p(x). If the basic signals were specified, 
so that Ts and W could be approximately determined (Ts and Ws cannot be obtained 
from a specification of X alone), these parameters could then be used for evaluation of 
system performance, exactly as in Section IV for equal-eigenvalue systems. 

techniques, the number of numerical integrations necessary for arbi t rary 1_ makes it 
doubtful that results can be obtained (iqdeed it was difficult enough for equal eigenvalues). 
With enough computer time, and perhaps a more specialized optimization program, it 
should be possible to generate a fairly complete set  of curves for equal eigenvalues. 

Concerning further numerical work, there a r e  two separate problems to be con- 

S 

For  the random- coding bound, without the development of some new optimization 
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APPENDM A 

Conditions Sufficient for Exponent Maximization 

THEOREM A . l  

A sufficient condition on p(x), r to  minimize 

subject to the constraints 

2 r *  
x p(x) dx = a 

for all  x, with equality when p(x) > 0,  for any 0 

Proof: Assume that p(x), r satisfy constraints 
any r1s P1 (x) that satisfy constraints (A. 3). 
- 

< p < m  

(A. 3) and condition (A. 4), and consider 
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At this point, define 

m 

yk 
2 1 -- --1 l + X k X  

Y; e 

It can be easily verified that 

and hence 

2 rl(-a+x L ) 

Using this result ,  with f(x) = pl(x) e - p(x) er('atx I, together with the sym- 

I metry properties of HX(x, xl) ,  we have 

I x b l  s Pl (XI1 - IX[" P(X)l 2 

- 

2 2  r x +x (rl-r)(-atx 2 )-2ra 

( l)€Ix(x,xl)l'p - dxldx - Ix[r,p(x)] . 
(A. 10) 

(rl-r)(-atx 2 )-2ra 

Since pl(x) e 2 0,  and (A. 4)  is satisfied 

Ix [q  # P1 (XI1  - Ix[r, P(d1 2 

(A. 11) 

(A. 12) 

2 
2 (rl-r)(-atx ) 

Note that p1 (x) 2 0, Ix[r, p h ) ]  > 0, e 2 1  + (rl-r)(-a+x ), so 

because p1 (x) satisfies constraints (A. 3). This completes the proof. 
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THEOREM A . 2  

A sufficient condition for p(x) to minimize 

subject to conditions (A. 3 )  is 

(A. 14) 

(A. 15) 

for all x and some X. 

Proof: Assume that p(x) satisfies (A. 3 )  and (A. 15), and pl(x) satisfies (A. 3 ) .  - 

We shall now show that the first integral is non-negative. 

(A. 17) 

00 

In HX(xJxl)  - = 1 [In(, t ~ h k x 2 ) t l n ( 1 t ~ X k x f ) - 1 n  (I tkXk(x2tx:)} 
k= 1 

++In (1tkkx2) - ln  (1 (A. 18) 

In HX(xJx1) = - 
(A. 19) 

Let f (x)  = p, (x) - p(x), and then 
I 

f(x) f (x l ) lnHX(xJxl )  dxdxl = 
- 

k= 1 

dx . 
00 

+ 2 1 lom f(xl)  dxl lom f(x) In 
k= 1 

(A. 20) 
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00 - But J0 f (xl)  dxl = 0 ,  and 

In 

In 

1 2  = In(1 t z x k x  --In 1 tk  x S - - X  x . ') ( k 2 )  2 k 

00 lom (ikkx2)  [p,(x)tp(x)] dx = 
k= 1 k= 1 

kka = Q < 00. 

Thus the second t e rm in (A. 20)  is zero, and 

f(x) f (xl)  In HA(x,x1) dxdxl = 
- 

It has been shown31 that 

when a and a a r e  non-negative, hence 1 

dx. (A. 21) 

(A. 22) 

(A. 23)  

(A. 24) 

(A. 25)  

(A. 2 6 )  

(A. 27) 

where 
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(A. 28) 

Therefor e 

2 

f(x) f (xl)  In HX(x,x1) dxdxl = f lo1 [Jam f(x) g[hkx2,t] d d  dt 2 0. 
- 

k= 1 

Therefore 

But p1 (x) 3 0,  and p(x) satisfies (A. 15)  by hypothesis, so 

o r  I,[pl (x)] - I,[p(x)] 3 0, thereby proving the theorem. 

THEOREM A. 3 

A sufficient condition on p(x), r for minimization of 

when p(x) and r a r e  subject to the constraints (A. 3)  is the following: 

for all x,  where 0 < s < 1, and 

(A. 29)  

(A. 30 )  

(A. 31)  

(A. 32)  

(A. 33)  

(A. 34) 

Recall that 

K-1 .-y/(ltxZ) 
Y 

P(Y 1x1 = 
r ( K )  (1 tx2 )K ’ 

and when p(y 1x1 is normalized in this fashion, Q should be replaced by Q/K in con- 
straints (A .3 ) .  At this point, however, Q i s  arbitrary,  so  we shall leave (A. 3 )  

unchanged, and make any necessary alterations later on. 

Proof: Let r,  p(x) satisfy (A. 3 )  and (A. 331, and consider any r l ,  pl(x) that satisfy (A. 3).  
We shall show that 
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Thus, if 0 < A < 1, 

R e c a l l  that 

(A. 35) 

(A. 36) 

(A. 37)  

(A. 38)  

(A. 39) 

1 a3 



Since 0 < A < 1, we may apply the inequality 

( l t t ) l / ( l -S)  2 1 t 7, t -1 s t ,  0 < s < 1 1 

to  obtain 

I& 9 Pl ( X ) l  - Io[’’ P(X)I 3 

(A. 40) 

(A. 41) 

The order of integration may be i n t e r ~ h a n g e d , ~ ~  however, and, since p(x) satisfies 
(A. 33) by hypothesis, 

Note that Io[r,p(x)] > 0, e t 2 1 t t, so 

I0[rl, p1 (XI]  - ~ ~ [ r ,  ~ ( ~ 1 1  2 

THEOREM A.4 

A sufficient condition on p(x) to minimize 

L 

subject to conditions (A. 3) ,  is 

-1 
2 

S A t A1x 
0 

for some Ao, A 1 ,  and all x, with equality when p(x) > 0. 

(A. 42) 

(A. 43) 

(A. 44) 

(A. 45) 

Proof: Assume that p(x) satisfies (A. 3 )  and (A. 45), and p1 (x) satisfies (A. 3). 
that the function Xpl(x) t (1-A) p,(x), 0 < X < 1,  wi l l  also satisfy (A. 3 ) .  

Note 

84 



- -  
It is well known that3* In x 2 In x, and by applying this inequality to the last term in 

(A. 461, 

or 

1 --In X 

(A. 47) 

(A. 48) 

(A. 49) 

W e  now apply the inequality ln ( l t t )  S t ,  -1 < t. 

(A. 50) I1[P1(x)] - Il[p(x)] 2 - {p,(x)-p(x)}ln ( l t x  2 ) dx t 1 - 
P(X) 

Jo Itx 2 dx 

(A. 51) 

By hypothesis, p(x) satisfies (A. 45). When p(x) > 0,  equality holds in (A. 45), and 
when p(x) = 0,  p(x) - p(xl) c 0,  so that 

(A. 52) 
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APPENDIX B 

Theorems Concerning the Expurgated Bound for 
Equal Eigenvalues 

Recall that we found, in Section 111, that when all  of the eigenvalues a r e  equal, we 
In this case, the con- need only compute results for one eigenvalue with value unity. 

ditions sufficient for maximization of the exponent, derived in Theorems A. 1 and A. 2 ,  

specialize to 

for any p in the range 0 < p < 00, and 

fo r  all x and some A when p = 00. Note that 

and r, p(x) a r e  constrained to satisfy (A. 3) .  

THEOREM B. 1 

If r,p(x) and r l ,  pl(x) both satisfy conditions (B.l) and (A.3), then r l  = r, p(x) = pl(x) 
almost everywhere, and furthermore 

Proof: If r, p(x) and r l ,  p1 (x) satisfy the conditions, by Theorem A. 1, they result in the 
same value of Ix. In the proof of Theorem A. l ,  i t  is shown that for this to be the case, 

where 

2 2 
rl(-a+x ) r(-a+x ) 

f (x) = p1 (4 e - P(X) e 
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Equation B. 4 may also be written 

Change variables to t = - 2 ,  and let  
1 t x  

1 

tp -  f [JF] 
h(t) = Jq 

Then, for 0 c p < 00, 

SOm 
2 

[2i:;pj 

dY = 0. 

h(t) e-$ dt dy = 0. [d 7 
low ($-1)2 H2(y) dy = 0. 

H(y) = r '  h(t) e-Yt dt. 

(B. 9) 

(B. 1 0 )  

As the Laplace transform of a pulse function, H(y) is entire.35 Equation B.9 implies 
H(y) = 0 almost everywhere, y 3 0, hence H(y) = 0 in the whole complex plane, and by 
Parseval ' s  law, 

low h2(t) dt = 0 

o r  

(B. 1 1 )  

(B. 12) 

Hence 
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I O W  

r l ( -a tx)  r(-atx ) 

d x = o .  
P,(x) e - P(X) e 

1 J 
(B. 13) 

2 2 r l ( -a tx  ) 
Thus pl(x) e = p(x) er(-utx almost everywhere, and any region where 

2 ( r - r l ) ( -a tx  ) 
equality does not hold cannot contain any area.  Hence pl(x) = p(x) e almost 
everywhere, and 

t But e >, 1 t t, equality only a t  t = 0. Hence 

1 a Io@' p(x) [ l t ( r - r l ) ( - a tx  2 l  ) dx = 1, 

(B. 14) 

(B. 15) 

2 so that (r-rl)(-utx ) = 0, where p(x) > 0. 

satisfy (B. l ) ,  so r l  = r, p(x) = p1 (x) almost everywhere, and 
It can be shown that p(x) = u o ( x - 6 )  cannot 

(B. 16) 

THEOREM B. 2 

When p = 00, p(x) = pluo(x) t p2uo(x-xo) satisfies (B. 2)  and thus maximizes the zero- 
ra te  exponent. 

Proof: Condition (A. 3) requires 

(B. 17) 

W e  shall show that (B. 2 )  is satisifed for a given value of a, when pl,  p2, A, x a r e  
0 2 chosen properly. For simplicity, let z = x , z = x2 and 

0 0' 

(B. 18) 

If we can choose the parameters so  that G ( z )  3 0, z 3 0, then the theorem is true. 
Plugging in  p(x) , and noting that H(a, a) = 1, we have 

G ( z )  = p1 In H l ( f i ,  0) t p2 In H ( f i , % )  - 2p1p2 In H(O,&) t A(z-a). (B. 19) 

Let 
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(B. 20) 

Direct evaluation confirms that G(0) = G(zo) = 0. 

and G(zo) = 0, then G(z) must have a minimum a t  z = z 
determines p1 and p2 in te rms  of z as follows: 

If G(z) is to be non-negative for z 2 0, 
This condition and G’(zo) = 0. 

0’ 

0 

1 
1 
2 - z  

Y ( Z )  = 
( 1 t z) (1 t + z) 

The important properties of h(z) a r e  the following. 
1. h (z l )  = 1, z l z  3.071 

2. h(z) is a strictly increasing function of z, z z l  
3. h(m) = a. 
Consider property 2 first. After some computation, we find that 

h’(z) = i [ l - f l ( z ) (3 t$ ) ] .  

It has been shown16 that f l (z)  is 

the point where f (z) is maximized, 1 
decreasing in this range, so  

(B. 21) 

(B. 22) 

(B. 23) 

(B. 24) 

(B. 25) 

positive and decreasing for z 3 z l  3. 071 (zl  is 

and is defined by f l ( z l )  = ~ ( z , ) ) .  Also, (3 t:) is 

(B. 26) 

and h(z) is strictly increasing for z 3 z l .  
evaluation. 

Properties 1 and 3 a r e  verified by direct 

Therefore, if z 
1. 

2. 

3. 
4. 

is increased from z1 to a, 
0 

h(z ) goes monotonically from 1 to CQ 
p1 goes monotonically f rom 1 to 1 / ~  

p2 goes monotonically f rom o to 1/2 
pzzo goes monotonically f rom 0 to CQ. 

0 
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Thus, for any 0 < a < Q), there is a one-to-one correspondence with some z1 < zo< Q), . 
s o  that we can work in te rms  of zo and la te r  find the corresponding a = p2zo. 
that G ( z )  3 0 ,  consider G'(z). 

To prove 

P1 P2 
W z )  =z + 1 - 1  ['- - l+Tz 1 ty (ztzo) 

Putting G'(z) over i ts  common denominator yields 

G'(z) = a(z) b(z), 
b(2) 

(B. 27) 

(B. 28) 

where b(z) is a cubic polynomial in z. For  z 3 0, a (z )  > 0, so the positive zeros  of 
G'(z) a r e  the same as those of b(z). 

Note that 

G'(zo) = 0 = b(zo). (B. 2 9 )  

(B. 30) 

and thus b(0) > 0. Also, 

Since b(z) is a cubic polynomial, i t  can have, a t  most, three rea l  roots. There must 
be at least one negative rea l  root because b(0) > 0, b(-Q)) < 0. Thus there can be, a t  most, 
one other positive root in addition to the one a t  z 

in (0, zo), and since G(0)  = G(zo) = 0, the Mean Value theorem36 states that G'(zZ) = 0, 

for some 0 < z2 < zo, and hence b(z2) = 0, too. 

G(z) is continuous and differentiable 
0' 

Thus b(z) must be as shown in Fig. 32a. 

Fig. 32. (a) b(z) versus  z. 
(b) G(z) versus  z. 
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the only roots of b(z) for z 3 0, and b(z) 3 0, z 3 zo, so that 
b(zo) = 0, b'(zo) > 0 

b(zZ)= 0, b'(z2) < 0 Thus 

G'(z) 3 0, z 3 z 
b(zo) = b(zZ) = 0 show that G"(zo) = a(zo) bf(zO) > 0, and Gf1(z2) = a(z2) b'(zz) < 0. 
G(z) has a minimum at z = zo and a maximum a t  z = z2. These a r e  the only two extreme 
points of G(z) for z 3 0, so G(z) must be a s  shown in Fig. 32b. Hence G(z) 3 0, and two 

impulses, suitably chosen, optimize the zero-rate expurgated bound. 

exponent is 

and thus G(z) 3 0, z 3 zo. Differentiating (B. 28) and noting that 
0' 

Thus 

The resulting 

Exe[co, a, 11 = a ( l  -e) fl(zo) afl(zo) C a f l ( z l )  S aEco 0.15a. 

THEOREM B.3 

If we define 

k= 1 k= 1 

then 

co 

~ 

Recall that Xk 3 0, C hk = 1, and 
~ k= 1 

r (-2 a txZ+xi  ) 
Ex[p, a,&] = -p In 

I 
L - 

dxdxl 
1 t 4 hk(x2txf) - 

I- 

(€3.32) 

(B. 33) 

(B. 34) 

(B. 35) 

(B. 36) 
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where in each case, r and p(x) must satisfy conditions (A. 3). 

Proof: 

' ) GX(x, x l )  dxdxl (B. 37) 3 r (-2atx t x  
Ex[p, a ,  X I  = -p In 

- - 

(B. 38) 

Define 

We shall now show that B"(x) 3 0, al l  x 2 0,  and any fixed a , a l  2 0. 

Evaluation of the second derivative shows that 

Using (B. 39), and defining 

x(4t5x) 
g(x) = -6 In ( l t x )  t 

(1tx)2 ' 

we find that 

But 

2 6x g"(x) - 3 0, x 2 0 ,  
(1 tx)4 

so  that g(x) is convex, and 

thereby proving that B"(x) 3 0, x 1, 0, and hence B(x) is convex. 
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(B. 41) 

(B. 42)  

(B. 43) 

(B. 44) 



If p is a probability vector, - 

(B. 45) 

Let 

(B. 47) 

Plugging this into (B. 37),  and making use of (50) and (B. 36) ,  we have 

(B. 48) 

THEOREM B . 4  

As a -L 0, a two-impulse p(x) asymptotically satisfies (B. l ) ,  the condition for opti- 
mization of the expurgated bound, and hence is asymptotically optimum. The resulting 
exponent is the same as the infinite-bandwidth, orthogonal-signal exponent found by 
Kennedy, for R S Rcrit. 

Proof: Define 

(B. 50) 
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2 where x: 2 3.071 maximizes f l ( x  ) given by (B.22). Also let r = 1/2p fl(x:), so that 

e 

2 -rx 
= H l ( ~ , x o ) l / p .  With this choice of r and p(x), 0 

(B. 52) 

2 The coefficients of a and a are bounded for all x, s o  a s  a -L 0, 

. .  
where we use the 0 notation to indicate that l im  1. I < 00. But 

a - 0  

(B. 53) 

(B. 54) 

2 
Thus Hl(o ,x) l /p  2 e-rx and F(x) 2 0 as a - 0. 

The resulting exponent is 

(B. 55) 

Exe[p, a ,  11 ?' af l  (x:), 

which is the straight-line bound that Kennedy found for low rates.  

THEOREM B.5 

Exe(w, a,  K) is a jointly concave function of a and K. 

94 

(B. 56) 

(B. 57) 
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Then 

Exe(w, a ,K)  = KF(*) f O(a,K). 

The conditions for e(a, K) to be jointly concave3' a r e  

G 0, eaa 0, OKK eaK 2 - eaaeKK c 0, 

where we a r e  using standard partial derivative notation. 
We first show that F"(a) d 0. From the proof of Theorem B. 2,  

F(a)  = max a 
z >,z 

0 

o r  

(B. 59)  

(B. 60) 

(B. 61) 

(B. 62) 

subject to the constraint gz = 0. Differentiating, we obtain 

(B. 63) Ft(a) = g a t  g Z X =  dz ga = (1-%) f l (z) .  

Again, in  Theorem B. 2 ,  we found that; and z were both increasing functions of a,  

and f l (z )  w a s  a decreasing function of z, and hence of a,  too. Thus ga is a decreasing 
function of a and hence F"(a) S 0. 

Direct evaluation confirms that 

1 eaa = K F"(a/K) S 0 

BKK = - F"(a/K) d 0 
2 a 

K3 

(B. 64) 

(B. 65) 

Ftl( a/K) (B. 66) a - 
'aK - -z 

(B. 67) 

and s o  (B. 60)  is satisfied, thereby proving the theorem. 
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APPENDS c 

Theorems Relating to the Random-Coding Bound 
for Equal Eigenvalues 

THEOREM C. 1 

When s = 1 ,  p(x) = pluo(x) t p u (x-x ) satisfies (A. 45) .  2 0  0 

a Proof: Condition (A. 3) requires (remember to replace a with K) 

Inequality (A. 45) may be written 

G(z) 3 A + X1z - In (l+z) - - 3 0  
0 

2 for all z 3 0, with equality when p(x) > 0,  where for convenience, w e  have set z = x , 
z = x2 Equality at z = 0 and z = zo requires 
0 0' 

1 1 A1 =Fin (ltz ) - 
0 0 1 + P1Z0' (C. 4) 

If G(z) is to be non-negative, and G(z ) = 0, we require that G'(zo) = 0. This deter- 
0 

mines p1 as follows: 

1 t zo 

Note that 

1 t zo 
In (ltzo) - 1 S zo, Z 

0 

so  that if  zo > 0, p1 > 0. We also require p1 < 1. This w i l l  be ensured i f  

2 

2 .  
z t 2z0 

( 1 +Z0) 

0 In (ltzo) 3 

Let 

(C. 5) 
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2 

2 '  

z t 2z0 

(1 +zo) 

0 H(z ) = In ( l t zo )  - 
0 

Then 

zo(zo-~)  

(1 tzo)  3 '  H1(z ) = 
0 

(C. 9 )  

and Ht(zo) > 0 when zo > 1. 

tation confirms that zo 2 .  163 satisfies (C.7) with equality, and results in p1 = 1. 
Hence if zo >, 2.  163, 1 2 p1 > 0. 

and have a probability function that satisfies a l l  of the constraints for that value of a .  
By using the continuity and differentiability 

Therefore, if  z > 1,  H(z ) is increasing. Direct compu- 
0 0 

Then we could specify z 2 2.163, solve for p l ,  p2, a, 
0 

Recall that G(0) = G(zo) = G1(zo) = 0. 

of G(z) to apply the mean-value theorem, there exists some z l ,  0 < z1 < z 

G1(zl) = 0. 

such that 
0' 

Differentiation of (C. 2 )  leads to 

X1(ltz)2- ( l t z )  t (1 lttP;Eo) 
G'(z) = 

( l t z ) 2  
9 

and thus G1(z) can only have the two positive zeros just mentioned. Also 

1 t zo 

1 PlZ0 

2 t zo 
G1(0) = X1 - 1 t ( ) = (  zo ) l n  ( l t zo )  - 2 

Making use of (C. 7) ,  we find that 

(C. 10) 

(C. 11) 

(C. 12)  

Thus G(z) must have a maximum a t  z = z l ,  a minimum a t  z = zo, and since these 
represent the only two zeros of G'(z) for z >, 0,  G(z) must be as shown in Fig. 33, 

thereby proving the theorem. 

Fig. 33. G(z) versus z. 
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The resulting exponent is 

(C. 12a) 

Eoe[m,a,K] G u[<ln ( l t zo )  - (C. 12b) 

By differentiation, i t  is easy to show that the right-hand side of (C. 12b) is a decreasing 
function of zo, for zo 2 2. 163, so that 

Eoe[w, a ,K] G 0 . 2 1 6 2 ~ .  (C. 12c) 

THEOREM C.  2 

As a -. 0, a two-impulse p(x) asymptotically satisfies condition (A. 33), 0 < s < 1. 
1 For  0 < s f 2 (0 < p G 1, and R 2 Rcrit) the resulting exponent is the same as the one 

obtained with orthogonal signals and a n  infinite bandwidth. 

Proof: Condition (A. 33) states 

is sufficient for  an optimum. 
Let 

- a p1 - 1 -Q P2 - 2 9  2 -  
xOK xOK 

- 

Define 

1 
x( 1 -s) 

f (x) E- [ ~ n ( ~ t s x ) - s ~ n ( l t x ) ] .  - 
1 -s 

(C. 13) 

( C .  14) 

(C. 15) 

(C. 16) 

The function f 

Choose x: so that f 

(x) is positive for x > 0, 0 < s < 1, and has a single maximum in x. 16 - 
1 -s 

(xt)  is a maximum, and let 
- 
1 -s 

1 -s 

Applying (A. 36) gives 

(C. 17) 
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low P(Y) ' / ( ' -~ )  dy ,< 1 +- a 
2 

xOK 

(C. 18) 

(C. 19) 

where the ba r  denotes an  average with respect to 

1 Using (A. 3 6 )  again, and assuming that s >, 7, we obtain 

(C. 22)  

(C. 23)  

1 t sx 

All t e rms  in (C. 23) a r e  bounded, so that 
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(C. 24) 

1 Now assume that 0 < s < 7,  and write G(x) a s  

Applying (A. 36) to the inner integral this time, we obtain 

(C. 2 6 )  

K 

(C. 27) 
1 t sx  

This result, together with (C. 24), proves that 

But 

2 
G(x) e-rx 3 

(1 t X 2 f  

2 1 t sx  
(C. 28) 

(C. 2 9 )  

(C. 30) 

Thus a s  a -c 0,  F(x) 3 0, with equality at x = 0 ,  x = f x  
tion is asymptotically optimum. 

The resulting exponent is 

and hence this probability func- 
0' 

( C .  31) 
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where p = s/ ( l -s) .  We shall show that for O <  s S x, 1 In 
a s  Q - 0. 

'/('-') dyl is negligible - 

1 -s 

H(y)=- l  t e 

Note that H(y) is an increasing function of y, H(w)  = t w, and 

If yo is defined by the relation 

then 

S H(y) ,< 0,  0 S y Y y o  
1 t xo 

1 We w i l l  now show that, for 0 < s S 2, a > 0, 

t > O  

- 1 t a S t Y O  

To show the f i rs t  part, let  

(C. 32) 

(C. 33) 

(C. 34) 

(C. 35) 

(C.  36) 

(C. 37) 

(C. 38) 

(C. 39) 

(C. 40)  
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(C. 41) 

1 so that for t > 0, 0 < s s z, A"(t) 3 0. 

and thus non-negative, so  that A(t) is increasing, and A(t)  2, 0, thereby proving the 
ass e rtion. 

But A(0) = A'(0) = 0, so  that AYt) is increasing 

To show the second part, let  

(C. 42) 

(C. 43) 

(C. 44) 

But (1 t t)  -(1-2s)/(1-s) < a-(1-2s)/(1-s) < a-1 in this region. Hence A;I(t) 2, 0. But 

Ai(0)  = A1(0) = 0, s o  that Ai ( t )  is increasing and must be nonpositive, so that Al(t) is 
decreasing and must be non-negative in -1 t a S t S 0, thereby proving the second part 
of (C. 38). 

If a/(xEK) S 1, then 

(C. 45) 

(C. 46) 
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Also, using (A. 3 6 ) .  we obtain 

(C. 48) 

so that 

(C. 49) 

(C. 50) 

1 and as a - 0, 0 < s F- the infinite-bandwidth, orthogonal signal exponent is obtained. 2 '  
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APPENDIX D 

Optimality of Impulses 

We shall prove that some p(x) consisting of a finite number of impulses must satisfy 
the sufficient conditions for optimization of the expurgated bound, 0 < p < 00, and the 
random coding bound, 0 < s < 1. 

and s to the random-coding bound. 
Let the subscript p relate to the expurgated bound, 

It has been shown (Theorems A. 1 and A. 3 )  that a sufficient condition for the mini- 
mization of 

over r and p(x), subject to the conditions 

2 r 2 0, p(x) 3 0 ,  x p(x) dx = a 

is 

(D. 1. P)  

(D. 1. s )  

(D. 3 .  s )  
2 

by z for all  x. 
and rewrite the conditions: 

Since x appears in these relations only in squared form,  replace x 

1 t + (z txf)  

dxl 2 1  e 2ra  
P 

(D. 4. P)  

fo r  all z 2 0. 

(D. 4. s )  
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. THEOREM D. 1 

Condition (D. 4. P)  is satisfied by some r ,  p(x) combination that also satisfies (D. 2) ,  

where p(x) consists of a finite number of impulses. 

Proof: Consider some p(x) consisting of a finite number of impulses, that is, 

p(x) = C p u (x - 5). 
that pn > 0 because any zn for which pn = 0 may be deleted. 
and then consider increasing N in a search for  some N that satisfies (D.4. p). 

show that the resulting I may be reduced by using r = 0 and any p(x) with N = 2 that 
P 

satisfies the constraints; thus we may skip N = 1. With N 2 2,  we formulate a vector 
minimization problem a s  follows: Specify the set (z,), and minimize 

N 

n= 1 
Label the positions so that 0 C zl  < z2 <. . . < zN, and assume n o  

W e  s tar t  with N = 1 impulse, 

When N = 1, p(x) = u o ( x - 6 ) ,  or constraints (D. 2 )  wi l l  be violated. It is easy to 

( l+zm)l / ]  1 /P 

1 
2 n m  1 t - ( z  +z  ) 

N N  
n 

P 
n=l  m = l  

over r, (pn}, subject to the constraints 

N 

Pn = 1, c PnZn = Q. 
n= 1 

pn 2 0, i: r 2 0 ,  
n= 1 

(D. 5) 

This is the discrete analog of the continuous minimization problem of (D. 1. p). 

It can be shown” that a necessary and sufficient condition for r ,  (p,) to minimize 
J is 

P 

Fp(zn) 3 0 0.7) 

for all n, with equality when pn > 0, where 

L 

If pn > 0 for  some zn > a ,  then r must be bounded (because r - 00 wi l l  make 

Jp  - 00 - clearly not a minimum). If N 2 2,  some zn must exceed a ,  for otherwise the 
constraints could not be satisfied. Thus, since J is a continuous function of r, (pn] in a 
closed, bounded region, (D. 7) must have a solution. 
r ,  (p,} that satisfy (D. 7) and result in a minimum value of J f o r  those (zn} (under the 
assumptions that at least  one zn < a ,  and at least one > a ,  or else no (p,) can satisfy 
the constraints). Restrict the analysis $0 such impulse sets ,  for any set  of impulses 
that does not first satisfy (D. 7 )  cannot satisfy (D. 4. p). 

P 
Given (z,}, there  must be some 

P 

P 
Theorem D, 3 states that any set  of N impulses for which zN > z has a value of J 

P 
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that can be strictly reduced by some set  of N or fewer impulses with a smaller  max- 
imum z is a finite quantity, independent of N, defined in the theorem. Thus 
we need only consider sets  of N impulses with all zn S z Theorem D. 4 states: Given 

P' 
any set of N impulses such that 0 S zn S zp,  there exists an  E > 0 and a positive inte- 
ge r  Mp (both independent of N,  r, bn]) such that for any z 

Fp 
By F(m)(z)  we mean the mth derivative of F (z). 

, 

where z 
n' P 

P 
in the range 0 S z S z (mj) j j P '  

( z )  # 0 for all z in the interval z S z < z. t E 
j J P' 

for some positive integer m S Mp. 

P P 
Consider splitting the range 0 < z S z into intervals of width E by letting z j  = jEp, 

Lp, where L is the smallest integer for which E L 2 z Suppose there  j = 0, 1, ..., 
a r e  n 2 mj+l nonzero impulses in the range z s z S z.  Then F (z) must have n 
zeros  in the range if (D. 7)  is to be satisfied. By the mean-value theorem, Ft (z) must 
ave nj-l zeros in the interval, and by repeated application to the derivatives of F (z),  h 

F By Theorem D. 4, this is impos- 

sible, so that at most N = C m .  S (L t1)M nonzero impulses can lie in (0 ,z  ) and 

sti l l  permit (D. 7) to be satisfied. 

P P 

P P P P' 

j j ]+1' P j 
P 

P (mj) 
(z) must have n - m .  2 1 zeros in the interval. 

LP 
P j ]  

fJ j=o J P P P 

Theorem D. 2 states that any N 2 2 impulses satisfying (D. 7)  but not (D. 4. p )  can be 
Suppose the best set  of N1 2 2 strictly improved by the addition of one more impulse. 

impulses does not satisfy (D. 4. p). 

impulses is strictly better. 
N1 C N 
than the best set  of N impulses. We have just  shown that no set  of N t'l impulses 
restricted to (0,  z ) can satisfy (D. 7). 

z Is, so at  least one p = 0. This reduces us back to N impulses. Hence there  can be 
n n . P  

no improvement in going from the best set  of N to N t 1 impulses. Therefore, we 
P P 

have a contradiction, and some set  of N or fewer impulses must satisfy (D. 4. p) ,  

thereby proving the theorem. 

Then some set (and certainly the best set)  of N1 t 1 
where either some set  of 

impulses satisfies (D. 4. p )  o r  some se t  of N t 1 impulses is strictly better 
P P 

We now apply induction up to N 
P'  

P P 
But (D. 7) must have a solution for any N t 1 

P P 

P 

THEOREM D.2 

Any set  of two or more impulses satisfying constraints (D. 6 )  and condition (D. 7 )  
but not (D. 4. p )  can be strictly improved by the addition of one more impulse. 

Proof: Since (D. 4. p )  is not satisfied, there exists some zo such that F (z ) < 0. Since 
p(x) consists of two or more impulses satisfying (D. 6 )  and (D. 7), there  exists z1 < a ,  

z > a such that p1 > 0,  p2 > 0, and F (z ) = F ( z  ) = 0. 

P O  

2 P 1  P 2  
Let 

p,(x) = P(X) t ~ [ B o u o ~ x - ~ ~ ~ P 1 ~ o ~ x - ~ ~ + P z u o ~ x - ~ ~ I  (D. 9) 

- zo - z1 
z2 - z1 

s P z - -  zo - z2 

z2 - z l  
Po = 1, P, = (D. 10) 
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Note that z2 - z1 > 0, so that P, and P, a r e  bounded. Since p(x) contains the last two 
impulses with pl ,  p2 > 0, if A is chosen small enough and positive, pA(x) 3 0,  and 

pA(x) has  one more impulse than p(x). 
straints in (D. 6 )  a r e  also satisfied by p,(x). Let JpA be the new value of J resulting 
when pA(x) is used with the same value of r as before. 

Direct evaluation confirms that the other con- 

P 
Then 

where we have used the fact that F (z ) = F  (z ) =  0. All t e rms  in the double summation 
a r e  bounded, and F ( z  ) <  0, so for some small positive A, J J p ,  and we have 
obtained a s t r ic t  improvement by the addition of one more impulse. 

P 1  P 2  

P O  

THEOREM D.3 

Any set  of N impulses for which some zn > z where 
P ’  

O < p < l  

9 1 c p <  00 

(D. 12) 

has a value of J that is strictly greater than the J resulting from some set  of N1 S N 
P P 

impulses, for which all zn S z 

Proof: Consider a set  of N impulses. If this set  does not satisfy (D. 7), it may be 
altered by changing (p,}, r so that (D. 7 )  is satisfied, with a s t r ic t  reduction in J . Thus 
w e  need only consider sets  for which (D. 7) is satisfied. be the maximum z by N n’ 
hypothesis greater than z , and 

P’ 

P 
Let z 

P 

Consider 0 < p < 1. 

(D. 13) 

(D. 15) 
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1 t zn 
C 1 t zn, and- < 2,  so 1 

2 n  1 t - z  

Now let 1 S p < 00. Making use of (A. 36) yields 

2ra  
By assumption, (D. 7) is satisfied, so G (z ) = J e , and P N  P 

(D. 16) 

(D. 17) 

(D. 18) 

(D. 19) 

(D. 20) 

It is known” that -p In J 
shown that 

is an increasing function of p ,  and in Theorem B. 2 it w a s  
P 

lim - p In J S u E o o Z  0 . 1 5 ~ .  (D. 21) 
P-m P 

Hence, 

r > In (1 + zN) -L(uE,t In 2 t In ( l t a ) )  , 
22N P 1 (D. 22) 

where 

p ,  o < p <  
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Differentiation of F (z)  yields 
P 

r z  n 

. (D. 24) 
r z  n F' (2) = e 

P 

n 

If r 2 1/2p, the bracketed t e rm in (D. 24) is positive for all  z ,  zn so that F (z) is a 
strictly increasing function. Hence F (z) can have, a t  most, one zero,  and no set  of 
N 2 2 impulses with r 2 1/2p can satisfy (D. 7). Thus we can res t r ic t  r < 1/2p. 

P 
P 

Using 
(D. 22), and dropping the second positive term,  we obtain 

{$-&ln (I+?) - ~ { a E ~ t l n 2 t l n ( l t a ) t 2 )  . 11 
Once again noting that  G (z ) = J we have 

P N  P 

Therefore, i f  

- In (1 ti zN) > aE, t In 2 t 2 t In ( l t a )  t 1,  2 

then 

(D. 25)  

(D. 2 6 )  

(D. 27) 

(D. 28) 

Loosening inequality (D. 27), we find that, if we define z a s  in (D. 12), then if 
P 

Consider E > 0, z = zN - E .  Then, by Taylor's Theorem, 38 

z n >  z F ' ( z  ) >- 1 
P'  P N ~ P Z N  

F p ( Z )  = - E F '  ( Z  ) - JzzN (z-t) F;(t) dt. 
P N  

If IFi(t) 1 S D over the region of integration, and zN > z then 
P'  

(D. 2 9 )  

(D. 30) 



Choosing 

1 
E =  S 

2DzNp e a/ P 
P 

we have 

E 
P 

Fp(zN-ep) < - - e -./p < 0. 
ZNP 

This depends on the properties of F"(z),  which we now investigate. 
P 

1/2P r z  r z  
F;(z) = ( r t - 6) F' (z) t 

2 P  
n 

l t z  p 
n= 1 

+ ($t 1) I -r t 

\[l t+(ztzn)]ltl/p [l t + ( Z t z  n 

1 - 
2 P  

We recall  that r S 1/2p, and res t r ic t  z S zN. Then 

(D. 31) 

(D. 32) 

(D. 33) 

(D. 34) 

(D. 35) 

(D. 36) 

Note that D, and hence E depends only on p and zN and not on {pn, zn), r. There- 

By Theorem D. 2 ,  J may be strictly reduced by adding an impulse at zN - E P' Consider 
a new set  of {zn], consisting of the original set  plus one at  zN - E 

improvement i f  we optimize on r ,  (p,) so that (D.7) is satisfied. If pN> 0, Fp(zN-cP)< 0,  

P '  
fore, regardless of r and any other impulses, if pN > 0, F P N P  (x -E ) < 0 when zN > z P'  

P 
We must get a s t r ic t  

P' 
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and (D. 7) cannot be satisfied. 
in favor of the one at zN - E 

P’  
unless all impulses a r e  at values of z < z , a new set of N (or l e s s )  impulses may be 

n P  
found that provides a strict  decrease in J thereby proving the theorem. 

P’ 

Therefore pN= 0, and the impulses at zN may be dropped 
thereby resulting in a strict  improvement. Therefore, 

THEOREM D . 4  

Let M be the smallest integer greater  than [ 1 t- tpzp t 7 ( l + z P ) j  2 , and FLm)(z) 
P 

denote the mth derivation of F (z). Given any se t  of N impulses such that 0 S zn S z 

there  exists an E > 0, independent of N, such that, for any z in the range 

0 S z.  S z F 

ger  mj S Mp. 

Proof: From the form of F (z) given by (D. 8), we see  that F (z) and all of its deriva- 
P P 

tives exist, a r e  continuous, and can be bounded independently of N in 0 S z S zp by 
methods s imilar  to those used in (D. 32)  through (D. 3 6 ) .  Each t e r m  of the sum can be 

N 
bounded in t e r m s  of z and Z pn = 1, so that any derivative can be bounded indepen- 

n= 1 
dent of N. Therefore, if we can show that there exists a positive A, independent of N, 

such that IF 

interval, then the continuity property of F 

for all A > 0, 1 S m ,< Mp and some 0, r. After some manipulation, we find 

P P’ 

(z) f 0 fo r  all z in the interval z S z S z. t E ,  for some positive inte- 
(m.1 j 

J P’  P j J 

P’ 

(mj) 
(2.) I > A for some integer m. in the range 1 S m S M and any z. in the 

P J J j P J 
(mj) 

(2) may be invoked to prove the theorem. 
P 

Suppose the opposite is true,  and there  exists a value of z such that IF(m)(z) I S A, 
P 

F’ (z)  = a(z)  b(z) 
P 

I Since 0 S r S 1/2p, a ( z )  and all of its derivatives must be 
~ 

0 S z S z Note that 
P’ 

(D. 37) 

(D. 38) 

(D. 39)  

bounded in the range 

(D. 40) 
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If F' (z) is to vanish with A for  Some z, then, since a (z )  is bounded away from zeroI  P 
Ib(z) I c0A, where co is a finite constant. Differentiating again, we have 

F"(z)  = a'(z) b(z) t a(z)  b'(z). (D. 41) 
P 

If b(z) vanishes with A, the first t e rm in (D. 41) wi l l  also vanish with A because a ' (z )  
is bounded, so i f  F t l ( z )  is to vanish with A, then Ib' (z) I 
finite constant. Repeat this procedure, and i f  F(m)(z)  and all previous derivatives a r e  
to vanish with A for some z ,  then Ib 
of the derivatives of b(z) reveals that 

c lA,  where c is another P 1 

P ( j )  I (z) S c.A, j = 0, 1, . . . , m - 1. Investigation 
J 

-(I /P + m )  
( l+zn) l /2P  (2 tz tzn)  Tmn 

n r z  N 
b(m)(z) = (-l)m ( l /p ) ( l /p t  1) .  . . (l/ptm-Z) 1 pn e 

n= 1 

Tmn = - 
P 

A s  m gets large, Tmn becomes positive; 

P P  P '1 T m n > m - [ l t - - ( l t z  1 ) t - ( l t z  . 

2 

- 1  - t m - 2  
P 

in fact , 

(D. 42) 

(D. 43) 

(D. 44) 

2 (m) Thus when m = M > 1 t L ( l t z  ) t k ( l t z  ) , Ib 
derivatives of F (z) cannot be arbitrari ly small ,  and the 

P P 

(z)l is strictly bounded away from 
P P P P  P 

zero. 
res t  of the theorem follows. 

Thus all of the first M 

THEOREM D.5 

Condition (D. 4. s )  is satisfied by some r ,  p(x) combination also satisfying conditions 
(D. 2) ,  where p(x) consists of a finite number of impulses. 

Proof: The proof is analogous to the proof of Theorem D. 1. 
be disregarded, and with N 2 2 ,  specify the set  {zn] and minimize 

Once again, N = 1 may 

(D. 45) 

over r ,  bn], subject to the constraints (D. 6). The integral on y does not affect the 
discrete character of the optimization, and a minor modification of Gallager's work 
shows that a necessary and sufficient condition for r ,  (p,) to minimize Js is 

10 

Fs(zn) 2 0 (D. 46) 

for all n, with equality when pn > 0, where 

112 



Once again we find that (D. 46)  must have a solution, so  we res t r ic t  the analysis to se t s  
of impulses that satisfy (D. 46) .  

Theorem D. 7 states than any set  of N impulses for which z > z has a value of Js N s  
that can be strictly reduced by some set  of N or fewer impulses with a smaller maxi- 
mum z Thus 
we need only consider se t s  of N impulses with all zn S zs, so  that there must be some 
best set  of N impulses. 
0 S z n S  z and r 3K(1-s)/zs, there exists an cS > 0 and a positive integer Ms (both inde- 

pendent of N, r, {pn}) such that, for any z in the range 0 S z ( z )+  0 for all z 

in the interval z S z < z .  t E 

where zs is a finite quantity, independent of N, defined in the theorem. n' 

Theorem D. 8 states: Given any set  of N impulses such that 

S' (mj 1 
z s ,  Fs j j 

j J s' j 
for some positive integer m G Ms. 

Then with reasoning identical to that used in the proof of Theorem D. 1,  we can show 
that, at  most ,  Ns < 00 nonzero impulses can lie in 0 G z S z 
be satisfied, i f  r 2 K(l-s)/zs. 
the last case ,  however, it can be shown that Fs(zs) < 0. 

N 3 2 impulses satisfying (D. 46) but not (D. 4. s) can be strictly improved by the addition 
of one more  impulse, at the point where Fs(z)  < 0. 
achieve improvement by adding another impulse at zs. 
find that r 2 K(l-s)/zS, or else (D.46) could not be satisfied: hence, at most, Ns impulses 
can be used, with strict  improvement. Once again we see that there can be no improve- 
ment in going from the best set of Ns impulses to  Ns t 1,  and this fact can be used, a s  
in the proof of Theorem D. 1,  to complete the present proof. 

and still permit (D. 46 )  t o  
S 

If r < K(l-s)/zs, there could conceivably be more. In 
Theorem D. 6 states that any 

Hence, if  r < K(l-s)/zs, we could 
If this new set  is optimized, we 

THEOREM D . 6  

Any se t  of two or  more impulses satisfying constraints (D. 6 )  and condition 
( D . 4 6 )  but not ( D . 4 .  s) can be strictly improved by the addition of one more 
impulse. 

Proof: Since (D. 4. s) is not satisfied, there  exists some zo such that Fs(zo) < 0. Since 
p(x) consists of two or more impulses satisfying (D. 6 )  and (D. 46) ,  there  exist z l  < a ,  
z > a such that p1 > 0, p2 > 0, F ( z  ) = F (z ) = 0. Let pA(x) be defined again by (D. 9)  
and (D. 10). Let JsA be the new value of J, resulting when p,(x) is used with the same 
value of r as before. Then 

2 s 1  s 2  

(D. 48)  
n= 0 

L 
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n= 1 

1 
2 Consider first 0 < s S -. From (C. 38), we see that 

tl/(l-S), t 2 0  

s 2  1 ( l t t ) l / ( l -S)  c 1 + - 
1 - s  2 t ,  - - G t < O  .+ { (1-s) 2 

Let 

(D. 50) 

(D. 51) 

(D. 52) 

Only P l  and p, can possibly be negative, so that if we choose A small  enough that 

2AIpll  < pl ,  2AIP2 I < p2, then t(y) > -- and we may apply (D. 51). 
of y 2 0 for which t(y) 3 0, and y be y 2 0 for which -z< t(y) < 0. 

1 
2 Let Y be the set  

1 Then 

where I1 and I2 a r e  the last two integrals in (D. 53). 
sum to zero, and F ( z l )  = F ( z 2 )  = 0, we find 

Making use of the fact that the Pn 

J s A  - Js s(l-s A e-ra/(l-s) F(zo) .+ e -r a / (  1 -s ) [1,+121 (D. 55) 

(D. 56) 
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Using (A. 3 6 )  it may be shown that 

Ln= 0 J 
Consider the last integral, 

(D. 57) 

2 

We can certainly choose A small  enough that 

'(-) 
P1 A2 1-s p2 IP,I <2. IP, I <2' 

'(m) 
A2 1-s 

Then 

1/(1-s) 
A e-ra/(l-s) 

J sA  - Js 

S t r a / ( l - s )  }]. (D. 60) 

The last  t e r m s  a r e  bounded, so that for some small  but positive A ,  JsA < Js, and a 
s t r ic t  improvement has been obtained by the addition of one more impulse, when 

1 
O < S S -  

Js e t- 
4 ( 1 - ~ )  

< s < 1, we can make use of the inequality 

(D. 61) 

where (ltto) (2s-1)h.1-s) = 2 defines to. The proof of (D. 61) is s imilar  to the proof 
of (D. 51) and wi l l  be omitted. An analysis s imilar  to the one just performed 
shows that 
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-ra/(  1 -s) 

1 - s  
A e  JsA - Js 

t (1-s) 

f 

(D. 62) 

1 for some 7 < s < 1 , so that for some small positive A, JsA < Js, thereby proving the 
theorem for all  0 < s < 1. 

THEOREM D.7 

Any set of N impulses with some zN > zs, where 

-Ias 

L -I 

1 - s s <  1 2 

1 o < s < -  2 

a =  

(D. 63) 

(D. 64) 

has a value of Js that is strictly greater  than the Js resulting from some set of N1 G N 
impulses, for  which all zn s zs. 
for all s, 0 < s G 1. 

Note that zs is a continuous function of s and is finite 

Proof: Again, we need only consider sets  for which (D. 46) is satisfied. 
maximum z 

Let zN be the 

by hypothesis greater  than zs, and n' 

(D. 65) 

Consider 0 < s < Then, by (A. 3 6 ) ,  --T 

Evaluation of the integrals leads to  

S 
r [ K - s K t  s](lt zN)' 

Gs(zN) s CZN [ K (  1 -S )+ s r (K) l - '  (1-s) 
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R e c a l l  t h a t  K 2 1 ,  so t h a t  

r [ K t s ( l - K ) ]  r ( K )  

I ' [ l tZ(K-l)(l-S)] < r ( 2 K )  

Gs(zN) < :zN[-] 
r ( 2 K )  s/(l-s) ( l t z N )  K s  

r ( K )  (l-S)K 

(K-1 ) (1 -S )t 1 t (K-1 ) (1 -S ) 

K s  

Gs(zN) e 
[ 1 t (K-1 )( 1 -S )IS/( 1 -S ) 

2 
r ( 2 K )  ( l tzN)- '  /('-'I s/(l --s 1 

rZN 
Gs(ZN) ' e [ r ( K )  ] (1-s) K 

(D. 68) 

(D. 6 9 )  

(D. 70)  

(D. 71)  

(D. 7 2 )  

(D. 73) 

1 Now c o n s i d e r  z< s < 1. 

B u t  e t 2 1 t t ,  and,  by hypothes is ,  Gs(zN) = JF p(y)l'(l-s) d y ,  so 1 dy (D. 76)  
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K In ( l t z N )  t K pn In (ltz,) c os----  r z ~  r a  
1 - s  1 - s  

n 

00 

rzN 0 G - - K In ( l t z N )  t 1 - s  

(D. 77) 

(D. 78) 

By hypothesis, J y  Ho(y) dy = JT p(y)”(’-‘) dy = Js e -ra/(l-s). Note that -In Js is an 
increasing function of s ,  and recall that we have already shown (Theorem C .  1)  that 

l im - In Js s 0. 2 2 a .  
s-1 

(D. 79) 

But 

(D. 80) 

and, by applying (A. 3 6 )  once more,  

(D. 82) 

We note that 

s (  1 t  Z N )  t (1 - s )  ( I t  Zn) 
s -  s (1 t ZN) t (1 -s)(l t Zn)  

so that 

K(1ta) rzN/( l -s)  r z N / ( l  --SI 
e S ZK(1ta) e 

(D. 83) 

(D. 84) 
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Putting (D. 84) and (D. 79) into (D. 78), and loosening the inequality still  further, we 
obtain 

1 - <  s < 1. 2 1 rZN - s  > In [In ( l t zN) ]  - a(Kt1) - In [K( l ta ) ] ,  

From (D. 73), we find 

(D. 85) 

(D. 86) 

Differentiation of Fs(z) yields 

If r 2 K(l-s),  FL(z) > 0, and Fs(z) is strictly increasing so that no 

dY - (D. 88) 

set of two or more 
- 

impulses can satisfy (D. 7). 
of (D.88), 

Thus, by restricting r < K(1-s), and dropping the last t e r m  

We now apply the lower bounds to r, given by (D. 86)and (D. 87), in the same fashion 
as in the Proof of Theorem D. 3, and by loosening the inequalities somewhat, we find 

, where zs is defined by (D. 63). Note that zs is a that, if zN > zs, Fg(zN) >- e 

continuous function of s, and is strictly bounded for 0 < s G 1. 

1 - s  -.22a 

ZN 

A s  in Theorem D. 3 ,  it may be shown that (Fg(t) I S Ds, 0 G t C zN, where Ds is a 
Therefore, by the same reasoning finite quantity depending only on s, K, a ,  and zN. 

that w a s  used in Theorem D. 3 ,  if zN > zs,  there exists an E S  such that 

The same line of reasoning as before completes the proof. 

THEOREM D.8 

Let Ms be the smallest positive integer m for  which 

sKzs 
cs > 0, K K(  1 - s )  - m [K(l-s)tm] e 

bS 
zs (2+ zs 1 

(D. 91) 

where 
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-ms 
O < s " y  1 

1 
2 - < s < l  

(D. 92) 

(D. 93) 

Given any set  of N impulses such that 0 S zn S zs and r 2 K(l-s)/zs, there  exists an 
bj) 

E > 0 and independent of N, such that, for any z .  in the range 0 S z S zs, Fs 
all z in the interval z S z < z .  t E ,  for some positive integer m S M t 1. 

# 0 for 
J j 

j J j S 

where 

(D. 94) 

(D. 95) 

(D. 96) 

(D. 97) 

(D. 98) 

(D. 99) 

(D. 100) 

We see  that FLm)(z) wi l l  consist of a sum of t e rms  involving Iz(yn), n =  0 ,  1 , .  . . , m, 
z C z 

m (and we shall soon show that this is the case) ,  then F:m)(z) will be 
S with bounded coefficients if 0 S z S z 

for all n 
bounded and continuous in the same region. 

Thus if I (yn) is bounded in the region 0 
S' Z 

Therefore, if  we can show that there exists 
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(mj) 
. a positive A such that IFs (z.) 1 > A for some integer m.  in the range 1 ,< m C Ms and 

J (mj) j 
any z 
to prove the theorem. 

in the interval, then the continuity property of Fs (z) may be invoked 

Suppose the opposite is true,  and there  exists some z such that IFLm)(z) I S A, all  

j 

A > 0, 1 C m C Ms. 
c1 is a bounded constant. 

Since a,(z) is bounded away from zero, then Ibl(z) 1 C clA,  where 
Differentiating again, we obtain 

F F ) ( z )  = a i ( z )  b l (z )  t a2(z) b2(z) (D. 101) 

a2(z) = al  (z)(ltz)-' (D. 102) 

b 2 b )  = lom -K(l-s) - 1 t l+z (l-s)y}] dy. 

(D. 103) 

Thus, since a i ( z )  is bounded, and (b l (z )  1 C c lA ,  and a (z) is bounded away f rom zero,  
we require Ib2(z)( Cc2A, where c2  is a bounded constant. Proceeding in the same 

tigate b,(z). 

2 

manner, we have Ibm(z) I C cmA, where bm(z)  = ( l t z )  2 b&n-l(z). Thus we must inves- 

Differentiation of (D. 103) leads to 

2 t 2 r ( l t z )  (1-s)y 
Q) 

b3(z) = Jo g(y) e 

(D. 104) 
2 

At each step, there  wi l l  be only the two negative t e rms ,  and a little thought shows that 

(z) = rn!r(ltz)mtl I z ( l )  - ( I - S ) ~  [K(1-s)tm] Iz(ym) t positive terms.  
(D. 105) bmt  1 

Making use  of (A. 36), we find 

(D. 106) 
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1 Now consider 7 < s < 1. 

Using (A. 36) again, w e  find 

Thus 

r s z -  

where cs was defined by (D. 93). 
1 Now consider Iz(l) .  When 0 < s S 7 ,  it may be shown that 

1 Similarly, in the range z< s < 1, it may be shown that 

and so 

where bs was defined by (D. 92).  Therefore 

(1 t z)m+K -bS 
bmtl(z) 2 K 

(1-s) 

r s z  1 

[K(l-s)tm] e ’-‘ c S - 1- r ( m + K )  

r ( K )  r ( m t 1 )  
- 

(D. 108) 

(D. 110) 

(D. 111) 

(D. 112) 

(D. 113) 

(D. 114) 

(D. 115) 
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(D. 11 6 )  

Also, i f  we constrain r 2 K(l-s)/zs, then 

(D. 117) K ( 1 + z)mtK K( l - s )  
r ( m t 1 )  - m [K(1-s)tm] e bmt (2) 3 (1 -s)K 

A s  m gets large, the exponential dependence of c 
last term,  so  for m large enough, bmtl(z) w i l l  be bounded away from zero. 
ular, if Ms is the smallest positive integer for which (D. 91)  holds, then bM t l ( z )  is 

strictly bounded away from zero. Thus all of the first Ms t 1 derivatives of Fs(z)  can- 
not be arbitrari ly small when r 2 K(1-s)/zs, and the res t  of the theorem follows. 

on m will  eventually dominate the 
S 

In partic- 

S 
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APPENDIX E 

Lower Bound to Error Probability 

We shall consider N uses of the amplitude-continuous , time-discrete channel 
derived in Section 11. 

coder-decoder combination using a block length N,  when the channel is used with an 
average power constraint. This w i l l  be a lower bound to the minimum attainable Pe and, 
for historical reasons, it is called the "sphere-packingI1 lower bound. 

Rcrit '  
upper bound previously derived. 
signal-channel model for this range of rates.  

be presented a t  the end of this appendix. The method w i l l  be s imilar  to that used by 
Shannon, Gallager, and Berlekamp3 for the discrete memoryless channel, although 
major modifications a r e  necessary to account for the continuous amplitude of this chan- 
nel model. 

We shall compute a value of Pe that cannot be reduced by any 

F o r  ra tes  R 3 
and N - a, this bound w i l l  agree exponentially in N with the random-coding 

It thus represents the t rue  exponential behavior of the 

Firs t ,  we present the body of the proof, making use of theorems whose proofs w i l l  

Let a code consist of M equiprobable code words (x1 ,x2 , .  . . ,zM). As a preliminary, 
define 

I- N 

where Ym is the set  of output v e c - x s ,  y, that a r e  decoded a - the mth code word, and 
~~ 

f(y) is any probability function defined on the output letter space. Note that 

Shannon, Gallager, and Berlekamp have shown that, for any code word in any code, 
and any s, 0 <, s < 1 ,  either 

m 
n= 1 n= 1 

or  (E. 4) 



, where Pem is the probability of e r r o r  when the mth code word is sent, and primes denote 
partial derivatives with respect to s ,  with f(y) held constant, that is, 

At this point, we shall choose a particular f(y) in order  to simplify the bound, 

p (y) 1 A 1 -s 1 
f(y) = (E. 7) loW p(y)l/(l-s) dy 

where p(x) and r a r e  chosen to  satisfy condition (A. 33), and therefore optimize the 
random-coding upper bound. In Appendix D, we have shown that some finite set of 

impulses must satisfy (A. 3 3 ) ,  so we know that a solution exists. From Theorem E. 1, 
s p"(x ,s )  S B(s) < W, 0 < s < 1, so  that 2 

s2 p1'(xmnI S) S NB(s). 
n= 1 

Theorem E. 2 states 

(E. 9 )  

~(x,,, S )  a -(l-s)Eoe (E. 10) 

By using (E. 9) and (E. 10) Where Eoe is the equal eigenvalue random-coding exponent. 
in (E. 4), either 

o r  (E. 11) 
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We now restrict  analysis to a subset of the code words in any code; in particular, 
1 N 2  a to those code words with Sm E N C 

1 - Z 

AM code words must lie in the subset under consideration. 
words, h, and consider quantizing on the values of xmn. 

xmn < -, 0 < A < 1. Since we require 
n= 1 

and hence at least  Sm C a ,  at most, (1-A)M code words can have Sm >=, 

Take any of these code 
For  this code word, 

M a 

m = l  

2 

N 
n= 1 

(E. 12)  

aN so certainly xmn S m. 
replace xmn by x. = j E .  

J = -. From Theorem E. 3 ,  

0 < s < 1, so if  x 2 <  x2 < x.  + E ,  then 
j J 

If j E  < x L n  < ( j t l ) c ,  where E is a small  positive number, 

J = 0, 1, . . . , J ,  where 

2 

2 2 2 .  
There a r e  J possible values of x J j' 

aN < D(s)  = B(s)'/' < w, for all x 3 0, 
E( 1 -A) 

2 

p'(xj ,s)  - D(s) E < p'(x, S )  < p'(x S )  t D(S) E .  
j' 

(E. 13) 

Let n. 
that jc S xmn < ( j t 1 ) c ) .  Then 

be the number of x L n  that a r e  quantized to x2 (that is ,  the number of x k n  such 
j Jm 2 

J n  1 $ p'(x S)  t D(s) E.  (E. 14) 
j' 

p l(x., s) - D(s )  E N 
n= 1 j = O  

j = O  t" J 

By using (E. 12)  and (E. 14), (E. 11) becomes either 

(E. 15) o r  
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-I 

Define the composition of any code word in the subset under consideration as the 
vector (n n 
the number of possible compositions, then c is the number of ways in which we can 

choose vectors (no ,n l , .  . . ,nJ)  such that n.  2 0,  n. = N, and Z jn. G - QN . From 
J j = o  J j = o  J ~ ( 1 - k )  

Theorem E. 4,  with P = - 
E(1-X) 

. , nJm) that is associated with that code word. If co is defined a s  om’ l m ’ ”  

O J  J 

Q 

(E. 16) 

, 
when N and PN a r e  greater  than 100. 

At leas t  one of these co possible compositions must contain a t  least - hM code words, 
We now further 

If Pec is the total e r r o r  

C O  
o r  else the total number of words in the subset would be less  than AM. 
res t r ic t  analysis to code words in that particular composition. 
probability for all  words in this composition, certainly 

x 
0 

Pem 3 - Pec. e M  C 
m= 1 

(E. 17) 

Consider the code words within this  composition, that have the smallest 

values of Pem. For these words, Pem S 2Pec, so  Pe max 2Pecy where Pe max is 
the maximum value of Pem in this group. Therefore, i f  we can derive a bound Peb so . IIr 
that there must be some code word in any composition with a t  least“ code words with 

Pem > Peb, then cO - 
I 

(E. 18) x 
‘eb’ PeI , -P  c e c  3- 2c0 ‘e max 2c0 a -  A h 

0 

Choose E = N-’/’, X = N’l, and consider a composition with a t  least - AM code 
2c0 

cO words. For that particular composition, at  least one code word must have zm S x ,  

otherwise (E. 3)  w i l l  be violated. For this code word, either 

RN < (l-s)Eoe In ( 8Nco) 
j = O  

(E. 19) 
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o r  

(E. 20) 

1 where, a s  before, RN = ~ l n  M. 

(E. 19). Note that B ( l )  is strictly bounded, 

Define I(s) to be equal to the right side of inequality 

lim (l-s)EoeL&.a,KI = 0, 
s - 1  - 

and consider 

j= 0 

Calculation of PYX, 1) shows that 

(E. 21) 

L --A 

which is bounded by 

where z1 is given by (D. 63) with s = 1. Thus 

(E. 22)  

(E. 23) 

1 t N In (8Nco). and hence I(1) = - 
where 

Restrict s to the range 0 < A 6 s < 1, ra 
N - 1  

(E. 24) 

L J 

and A is a constant given later by (E. 67) .  Clearly, for large N, A w i l l  be arbi-  
t ra r i ly  small. 

0 
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(E. 25) 

It is known39 that p(x, s )  is a convex function of s, so that pf(x, s) is an  increasing func- 
tion of s, and thus if  N is large enough s o  that A < 1 - - , then 

@ 

(E. 26)  

Since I(s) is continuous, if  I(1) < RN < %, then there exists an $, A < 2 < 1 such 

By 
A 

that RN = I ( s ) .  Since inequality (E. 19) is not satisfied for s = 2, (E. 20) must be. 
J "jm 

using the equality in (E. 19) to eliminate Z 7 pl(x. ,  $) from (E. 20). we have 
j= 0 J 

for some g, A < 2 < 1 ,  and some code word in the composition, provided I(1) < RN < %. 
This gives us the bound that is necessary to apply (E. 18).  By using (E. 16) to specify co, 
and noting that B(C) SB(A) ,  and 0 ,< r S K, (E. 27)  becomes 

A 

A =  rl Ka +'i;s 1 [ In (16N) t {1aN3/21'2 t 1 } In (aN5I2)] 
- 1/N l - l / N  

(E. 28) 

(E. 29)  

(E. 30) 

I 

If (E. 28) is true for some 6, A < $ < 1, it is true for the s that minimizes the 
~ 

I right-hand side. Therefore, i f  AN < RN < dN, then 

(E. 31) 

where % and dN go to zero and % goes to infinity a s  N goes to infinity. 
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by p, 0 < p < 00, the right-hand side of (E. 31) is the same as the If w e  replace - 1 - s  
except for additive factors that go to zero as N - 00, 

S 

random-coding upper bound to P 
and the difference in the range of p. 

0 < p 

e' 
When RN > Rcrit, the maximum is in the range 

It is worth noting that this lower bound depends on the nature of the channel model 
in a rather limited fashion. To be specific, this bound can be applied to any time- 
discrete, amplitude- continuous, average energy-constrained channel p(y I.), for  which 
the following properties hold: 

< 1, and s o  as N - 00, the upper and lower bounds exponentially agree.  

1. There exists 0 < r < A, p(x) satisfying constraints (A. 3) such that 

where 

N 

pL"(xmn, s) S B ( s )  < 00, O < S S l  

n= 1 

3. o <  s <  1, 

where B(s) and D(s )  a r e  continuous and bounded for 0 < s ,< 1. 
The previous bound is not valid at the end point, s = 1, and since many of the com- 

plexities that a r i s e  for 0 < s < 1 can be avoided when s = 1, i t  is worth while to consider 
this point as a separate case. For  this point, 

1/(1-S) [so" P(X) P(Ylx)l-s dx] K-lcK e-CIY 

, (E. 32) - - y 1  f(y) E lim 
s -1 1 /( 1 -s) r(W 

where 

(E. 33) 

Because of the simple form of f(y), i t  is possible to evaluate pt(x, 1) and pt'(x, 1) directly. 
The results are 

(E. 34) 
c1(1fx 1 

2 c1 - 1 t In ( l t x  ) + 
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2 1 
C K(ltl/c:). (E. 35) 

By applying (E. 4), with s = 1, fo r  any code word in any code, either 

1 
'm > T 

o r  

n= 1 n=l  

By using (E. 34) and (E. 35),  (E. 36) may be replaced by 

A~~ * 1 N 1  N 

Pem > exp -NK - 1 t + 1 In ( l t xkn>  t + 1 
n= 1 n= 1 xmn 

(E. 37) 

where 

A~~ - - % n 4 t  - NK &W. 
Choose p(x) a s  the one discussed in Theorem C. 1. In this case,  

1 2 
l n ( 1 t x  2 1 1  ) tT2 <--t- 1 x [ 1 -- :l t lom p(x) In (1tx2) cix . 

l l t x  c1 = 

N 1 f [n ( l t x L n > t  - 1 ] :+ ($- 1 xkn) .  
n= 1 N c1 1 t x m n  n= 1 

H = l - -  t lom p(x) In ( l tx2)  dx 3 0 .  
c1 

Therefore, either 
I 

I 1 
' m ' T  

l o r  

Pem > exp -NK xmn A~~ * 1 In c1 - 1 t -t 1 - H f 2  
c1 aN 

n= 1 

(E. 38) 

(E. 39) 

(E. 40) 

(E. 41) 

(E. 42) 
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aN 0 < A < 1. There . N 2  Restrict the analysis to code words for which Z 
n= 1 xmn G - 1 - A '  

must be a t  least AM such code words. 

AM' 

At  least  one of these AM words must have zm G 

- For that word, either 

o r  

A A (I - 2 p(x) In ( l+x  ) dx t 1- 1 Pem > exp -NK c1 + I-x Iow 
(E. 43) 

Observe that c 2 1, so rA (I - t) G 0, and also I," p(x) In ( l + x  ) dx < 1; x p(x) dx = a.  

Thus, if 

1 A 2 2 

1 

then 

(E. 44) 

for at least one code word in any code. 
argument as before, we find that if RN 3 

Let A = l /N. Then i f  we go through the same 
1 In (8N), then 

Pe 3 exp -N [ Eoe(w, a, K) t (" N In 2 t - N-1 aK +L N 1114) + /--)I (E. 45) 

which is of the same form a s  (E. 31). 

THEOREM E. I 

8Kas 
, where A. is a bounded constant, and as is defined 2 

by (D. 64). 
s pI'(x,s) G B(s)  = (Ao) 

Proof: Recall that - 

where pl(x, s) is given by (E. 5), f(y) by (E. 7), and now 
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After some manipulation, we find 

( l t x  2 K  ) e y / (1 tx2 ) )  P.. e ’ 
f (N) 

and 

(E. 47) 

If we define 

we find 

(E. 49) 

(E. 50) 

(E. 51) 

where the bars denote an  average over y with respect to ~ ( y l x ) .  
In computing ptt(x, s) we can drop any multiplicative constant, independent of y, in 

f (Y)  
because the logarithm w i l l  convert i t  to an  additive constant, which w i l l  cancel 

P(Y I x) 
when we compute the variance (E. 51). Since 

l and the first two te rms  a r e  independent of 

-1 
qx(Y) 

e 9 (E. 52) 

(E. 53) 

133 



- -  
We now make use of the fact that (c-F)2 s c2, to obtain 

(E. 54) 

In Theorem D. 3 ,  it was shown that xn s G, with zs as defined in that theorem. S 
Thus 

-y( 1 -s) -y( 1-s) 
l t z ,  1 t z s  

e -Y( l - s )  < e < e  

Applying these inequalities to (E. 49), we find 

qx(y) = a + bx(Y) 

Then 

But 

(E. 55) 

(E. 56) 

(E. 57) 

(E. 58) 

(E. 59) 

(E. 6 0 )  

Evaluation of the integrals leads to 

- 

(E. 61) 



m t K  

m *  
- r ( m t K )  (1 tzs)  
ym s 

rw) S 

Also note that 

(E. 62) 

(E. 63) 

and so 1.1 S Kzs. Therefore 

Kt2 

(E. 64) 

2 Kt2  

2 2 
qx(y) (KzJ t 2Kzs 

s 2 plI(x,s) d K 2 ( l tzs )2  t 2K2(1tzs)Kt2 t (K2tK)(l+zs)Kt2 < 5K ( l t z s )  . 
(E. 65) 

, where A > 1 can be defined from (D. 63) and as > 1 is defined by (D. 64). 
a 
S But z = A 

Then 
S 

s 2 p(t(x,s) d 2K2(2zs)Kt2 < (10K2Aas)Kt2 < (14K2A) 8ka5 
, (E. 66) 

and if  we let 

2 A. = 14K A, (E. 67) 

Note that B(s) w i l l  be continuous and bounded for 0 < s d 1,  since as is. 

THEOREM E.2  

(E. 68) 

(E. 69) 

(E. 7 0 )  
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(E. 71) 

and, since (A. 33) is satisfied, 

(E. 72)  

(E.  73) 

(E. 74) 

THEOREM E. 3 

l a 
ax 

I,pI(x,s) < B(s)’I2 for any x >, 0, 0 < s < 1,  where B(s)  is defined in Theo- 

r e m  E. 1. 

2 - Proof: For convenience, define z x . 

(E. 75) 

After plugging in the functions involved, and considerable simplification, we find that 

where we have defined 

loW P(y)l/(l-s) dy t K In ( l t z )  t , 

(E. 76) 

3 

(E. 77) 



and 

(E. 78) 

Differentiation of (E. 76) with respect to z, and further manipulation, yields the 
expression 

-- a K -  
--'(&,S) = -+ l t z  h'(z,u) t ~ [ h ( z , u ) h ' ( z , ~ ) - h ( z , ~ )  h'(z,u)], az 

where 

h'(z,u) = A h(z,u) = 

(E. 79)  

(E. 80) 

and a bar  represents  an average over u with respect to the density 

v 

lom p,(u) esh(zyu) du 

s 1, so Note that 0 < - 1 
1 + x  

-U s h'(z,u) 4 0 (E. 82) 

(E. 83) 

The procedure to be followed is s imilar  to that used in the proof of Theorem E. 1. 
Using (E. 55) and (E. 58) yields 

h(z ,u)  = a + c(z ,u)  

-u(l+z) G -uz s c (z ,u )  u p+-J - s u s u( l+z)  

(E. 84) 

(E. 85) 
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Evaluation of the integrals leads to 

mtK - r ( m t K )  [ 1 t zs ItK r ( m t K )  ( l t z s )  
um S (1 t sz )K c 

r ( K )  1 t sz t (l-s)zs r ( K )  ( l t s z ) r n  ' 

Hence 

and also 

(1 t z )  K( 1 tzs)Ktl 
1 t s z  

Kzs t K( 1 tzs)Ktl 
S 

< S Kzs t 

Note that 

lh(z,u)h'(z,u)I S Ih(z,u)I i h t ( z ,u ) I  S ulh(z ,u) I  S 1 a l U t  (1tz)u 
- 

2 

K t 2  (1 t z )  K(Kt  1) (1 t z s )  Kt2 3K2 (1 tzs)  
c Kt1 

Ih(z,u)h'(z,u)I S KzsK(ltzs) 2 S 
(1 t s z )  

Plugging (E. 88), (E. 91), and (E. 93) into (E. 81). we find 

thereby proving the theorem. 

THEOREM E . 4  

(E. 86) 

(E. 87) 

(E. 88) 

(E. 89) 

(E. 90) 

(E. 91) 

(E. 9 2 )  

(E. 93) 

(E. 94) 

I 

J 
C n. = N, n l , .  . . ,nJ)  such that n. 3 0, 

0' J j=o J 
Let co be the number of possible vectors (n 

J = PN, n.  an integer, and J 
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(E. 95) 

2 m+1 
Then co < 2(pN ) when N and PN > 100. The quantity co can be interpreted 
a s  the number of ways in which N indistinguishable balls may be distributed into J t 1 
distinguishable boxes, subject to constraint (E. 95). 
p slightly to make J an integer, without affecting the character of the result. 

Proof: Constraint (E. 95) is difficult to deal with directly, but it may be loosened some- 
what to compute an upper bound to c We ask, How many different n. can be positive 
when (E. 95) is satisfied? Clearly, the largest number of positive n. is obtained when 

J 
n1 = 1, n2 = 1, . . . , nI = 1 until constraint (E. 95) is satisfied with equality (or  a s  close 
to equality as possible), and no = N - I, provided I < N, of course. This means that 

When PN is large, we can change 

0' J 

I(It1) 
1 f 2 +  3 +  . . .  t I=- 2 < BN (E. 96) 

(E. 97) I S - - t y ~ l t 8 p N < < .  1 1  
2 

Therefore, we can obtain an upper bound to c by computing do, the number of pos- 

3 j=O 

J o  
sible vectors (no, n l , .  . . nJ) such that n.  2 0, I: nj = N, nj  = integer, and, a t  most, 

vectors satisfying (E. 95) w i l l  also satisfy these constraints. 
different n. a r e  positive, where J = PN. This w i l l  be an upper bound because all 

J 

m N  

be put into m distinguishable 
number of ways N balls 

slots so  that no slot is empty 
slots can be chosen from 1 can of ways the m occu- 

(E. 98) 

d =  0 I[ 
m= 1 

m= 1 

m= 1 

If PN is large, > loo ,  fo r  example, and 1 C m S m, then 

(E. 99) 

(E. 100) 

(E. 101) 
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(E. 103) 

andif  N > 2, 

(E. 104) 

m i - 1  
do < 2N mN(PN)mN'l < 2(PN2) , 

thereby proving the theorem. 
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